H₂ formation on graphitic and amorphous-carbon grains in the ISM

Stéphanie Cazaux Groningen, the Netherlands Marco Spaans Groningen, the Netherlands Vincent Cobut Cergy pontoise, France Paola Caselli Leeds, England

Workshop ARCHES - Elementary mechanisms of hydrogen / carbon interactions

27-28 October 2008

Molecular Hydrogen Importance of H₂ in the Universe Observations in astrophysical objects Model

Understanding H₂ formation:

- Laboratory experiments and DFT calculations
- Rate equations and Monte carlo simulations

Comparison with observations Conclusions

Importance of H₂

 Most abundant molecule in the universe

 $M(H_2) \sim 5.10^9 M_{\odot}$ in the Milky Way

- Formation of the first stars of the Universe: H₂ is the only coolant available.
- Key specie for the formation of other chemical species

How can you observe H₂

H₂ observations in astrophysical environments

Dying stars Planetary Nebulae $T_{grain} \sim 125K$ $T_{grain} \sim 1000K$ Supernovae remnants T_{grain}

Active galactic nuclei

< 6000

H₂ forms for a wide range of physical

Newly born stars

H₂ formation

Gas phase reactions?

- Very slow process
- $H \, + \, e \text{-} \rightarrow H \text{-} \, + \, h \nu$
- $H- + H \rightarrow H_2 + e-$

Process not efficient enough to explain the observed abundance of H_2 in the Milky Way.

- For high densities n_H> 10⁸ cm⁻³,
- 3 body reactions
- $H + H + H \rightarrow H_2 + H$

- Grain surface chemistry: Gould & Salpeter 1963
- In the Milky Way, H₂ formation on dust grains dominates by many order of magnitude.

H₂ <u>Interstellar medium</u> <u>composition:</u> gas (99%) and dust (1%) by mass Dust composition:

Interstellar dust grains

How does H_2 form on dust grains for a wide range of physical conditions? Does the formation of H_2 changes with the size of dust grains?

H₂ formation on interstellar dust: grain surface chemistry

Process studied by several authors:

Hollenbach & Salpeter 1971, Duley 1996, Katz et al. 1999, Morisset 2004, Cuppen & Herbst 2005, Cuppen & Hornekaer 2008

Our model: Interactions atom/surface: Experiments: TPD DFT calculations Rate equations and Monte carlo simulations

Comparison with observations

Grain surface chemistry: laboratory experiments

Temperature programmed desorption Graphite at high temperatures Amorphous carbon at low temperatures

Zecho et al. 2002 Pirronello et al. 1999 beam at 1800 - 2200 K Beam H and D at 150-200K Surface 150-1000K Surface 5-15K Mass spectrometer H₂ and D₂ Mass spectrometer to measure the amount of HD that desorts En Model: Physisorption + chemisorption physisorption Tunnel + thermal hopping chemisorption

Surface characteristics: Amorphous Carbon

Cazaux & Tielens

Surface characteristics: Graphite

Graphite:

Chemisorption of H C puckered out of the basal plane associated with an activation barrier ~ 0.2 eV. Jeloaica & Sidis 1999 Sha & Jackson 2002

Recent studies: Hoernekær et al. 2006 Rougeau et al. 2006 Bachellerie et al. 2007

\ /

 $1^{st} H \rightarrow barrier$ $2^{nd} H \rightarrow no barrier$ to enter para site if spin opposite to $1^{st} H$ form H

Grain surface chemistry: mobility

Physisorption + chemisorption Atoms move on the surface by thermal hopping and tunneling effects

 T_{dust} (K)

10

 $P_{ij} = \frac{1}{kT} \int_0^{B_i} \exp\left(-\frac{E}{kT}\right) T_{ij}^{(1)} dE$

 $+\frac{1}{kT}\int_{P}^{\infty}\exp\left(-\frac{E}{kT}\right)T_{ij}^{(2)}dE,$

100

Rate equations: Method

Mechanisms:

Rate equations: Follow the population of the different chemical species on the surface

- physisorbed H atoms
 - physisorbed D atoms
- chemisorbed H atoms
- chemisorbed D atoms
- H2
- HD
- D2

ER

Rate equations: Results

H₂ formation involves: Physisorbed atoms at low temperatures Chemisorbed atoms at high temperatures Molecular hydrogen forms on dust grains until Tdust>100K.

Model Monte Carlo simulations

chemistry on small grains

detailed characteristics of the surface (graphite, incusion of para sites properties)

grid sizes vary from few Å to $0.1 \ \mu m$

Atoms arrive randomly on the grain and have a random walk Each point of the grid is a site: physisorbed and chemisorbed

t=-ln(xrand)/t(evt)

List of accretions times (random number depending on the flux of atoms)

Each time an atom arrives on the grain \rightarrow possible events

Determine the next event that is ordered in the list

Model Monte Carlo simulations

Rate equations and Monte Carlo simulations give the same results for AC. For PAHs, the inclusion of the para sites properties increases the H_2 formation efficiency by more than 1 order of magnitude

H₂ formation rate in the ISM

R_{H2} = (1/2) $n_H v_H \sigma n_d S_H ε$

- n_H number density of H atoms
- \cdot v_H speed of H atoms in the gas phase
- σ area of the grain
- n_d number density of dust grain
- \cdot S_H sticking coefficient of the H atoms on the grain
- **E** H₂ recombination efficiency

Tielens & Hollenbach 1985 $R_{H2} = 3.\ 10^{-17} (T_g/100)^{0.5} S_H \epsilon cm^{+3} s^{-1}$

Schematic diagram of a photodissociation region. A PRD extends from the atomic surface region to the point where O_2 is not appreciably photodissociate (~ 10 visual magnitude). In PDRs, hydrogen is mainly into the H₂ form and carbon mostly into CO. From Hollenbach and Tielens 1997.

H₂ formation rate: Photodissociation Regions

Rotational transitions of H₂ and PAHs emission

Abergel et al. 1996 Habart et al. 2003

 Rotational transitions of II2

 ISO LWS

 ISOCAM- CVF

 Spectro- imaging

 Rotational transitions of II

 \Box ISO SWS

Gas temperature Photodissocation of H_2 Formation rate of H_2 Grain temperature

H₂ formation rate: Photodissociation Regions

Region	Tsg	Tbg	Tgas	Rate H2
	Κ	K	K	cm^3s^{-1}
chamaeleon	>2.7	15	60	4 10-17
Oph W	10	36	330	1.5 10-16
S 140	10	36	500	1.5 10-16
IC 63	12	44	620	1.5 10-16
NGC 2023	25	60	330	3 10-17
Orion bar	62	90	390	3 10-17

Habart et al. 2004

H₂ formation rate: Photo-dissociation Regions

The H_2 formation rate derived in different PDRs cannot be reproduced if high barrier against chemisorption.

With the inclusion of para sites properties, H_2 formation at high dust and gas temperatures can be explained.

Nevertheless the formation rate depends on other factors

 R_{H2} =(1/2) $n_H v_H \sigma n_d S_H \epsilon$

Changes of relative abundances between PAHs and very small grains (AC)

Conclusions H₂

- H₂ forms very efficiently in cold environments, and is observed under extreme conditions in our Universe (Shocks, high UV, low metallicity).
- To understand the formation of H₂ on cold and warm dust grains, 2 interactions atom/surface are needed: physisorption and chemisorption.
- Observations of PDRs show that the efficiency of $\rm H_2$ formation on warm grains is important.
- The inclusions of the barrier-less route to form H_2 on graphite (para sites properties) is necessary to reproduce the observations of PDRs.

Conclusions: H₂ observations

H₂ has been observed in many astrophysical environments, under extreme conditions (high UV, shocks, early Universe) The formation rates are: In diffuse clouds, $R=1-4 \ 10^{-17} \text{ cm}^3 \text{ s}^{-1}$ In PDRs, R=0.3-2 10 ⁻¹⁶ cm³ s⁻¹ In other environments, H₂ is observed but no rate of formation has been derived.

Models

Explain observations of diffuse clouds Concentrate on low grain temperatures Hollenbach & Salpeter 1971 Inclusion of impurities to extend the efficiency to higher grain temperature.

FIG. 1.—Numerical results for the recombination efficiency as a function of grain temperature. Case 1 has the following adsorption parameters: $n_2 = 500 \text{ cm}^{-3}$, $n = 10 \text{ cm}^{-3}$, $D = 450^{\circ}$ K, $D_2 = 550^{\circ}$ K, $D_m = 200^{\circ}$ K, $D_m = 200^{\circ}$

Gas Kinetic	R (cm ³ sec ⁻¹)	η	
Temperature, T _k (K)			
40	3.2 x 10 ⁻¹⁸	0.0	
100	3 x 10 ⁻¹⁷	0.3	
300	1.2 x 10 ⁻¹⁶	0.0	
various T_k .	(>40 K) dust exposed to	o H atoms wit	
various T _k . Gas Kinetic	R (cm ³ sec ⁻¹)	ם H atoms wit ק	
various T _k . Gas Kinetic Temperature, T _k (K)	R (cm ³ sec ⁻¹)	ם H atoms wit	
various T _k . Gas Kinetic Temperature, T _k (K) 200	R (cm ³ sec ⁻¹) 2.9 x 10 ⁻¹⁹	η 2 x 10 ⁻³	
various T _k . Gas Kinetic Temperature, T _k (K) 200 300	R (cm ³ sec ⁻¹) 2.9 x 10 ⁻¹⁹ 6.0 x 10 ⁻¹⁸	η 2 x 10 ⁻³ 3.5 x 10	

Duley 1996

- Hydrogenated Amorphous Carbon
- Interstitial H atoms at low grain temperatures (bonding en. 0.05-0.2 eV, with Ea~0.1 eV)
- H chemically bond to -CH, -CH2 and -CH3 at high grain temperatures (2.5-3.5 eV)
- Efficiency of formation increases with the gas kinetic temperature.

Models

Models based on TPD experiments:

- Katz et al. 1999
 Rate equations
 Langmuir-hinshelwood
 physisorption
- <u>Cupen & Herbst 2005</u>
 Monte carlo simulations
 Langmuir-hinshelwood + Eley-Rideal
 Physisorption + rough surface
- <u>Cazaux & Tielens 2002</u>
 Rate equations
 Langmuir-hinshelwood + Eley-Rideal
 Physisorption + Chemisorption

H₂ formation rate: Diffuse clouds

Physical Conditions Within Different Clouds							
Cloud n	(H)(cm ⁻³)	$\beta_0(10^{-10}s^$	1) S	$\frac{R(10^{-17} \text{ cm}^3 \text{ s}^{-1})}{\text{ cm}^3 \text{ s}^{-1}}$			
$\delta \text{ Ori } \dots \dots \\ \iota \text{ Ori (comp 1) } \dots \\ \iota \text{ Ori (comp 2) } \dots \\ \rho \text{ Leo (comp 2) } \dots \\ \tau \text{ Sco } \dots \\ \gamma \text{ Vel } \dots \\ \zeta \text{ Ori (comp 2) } \dots \\ \zeta \text{ Pup } \dots \dots \\ \zeta \text{ Pup } \dots \dots $	10-30 30 10-30 30 10-100 100-300 1000 10	5 5 5 40 20–40 40 160	0.75 1 0.75? 1 1 1 1	$2-0.7 1? \geq 0.5 3 4-0.4 1 ? 3$			

Gry et al. 2002 Far-UV absorption spectra with FUSE $R=4 \ 10^{-17} \text{ cm}^3 \text{ s}^{-1}$

In diffuse clouds, H_2 formation rate is 1-4 10 -17 cm³ s⁻¹

Jura et al. 1975 Copernicus observations Photo-absorption in the Lyman and Werner bands leads for 90 % of excited molecules in the ground electronic state.

