

Laboratoire de Physique Subatomique et de Cosmologie

# Formation of vibrationally-excited $H_2$ on graphite surfaces (comparison with tantalum and stainless steel surfaces)

Stéphane Béchu, Didier Lemoine, Marthe Bacal, Alexandre Bès, Jacques Pelletier

Laboratoire de Physique Subatomique et de Cosmologie, Centre de Recherche Plasmas-Matériaux-Nanostructures, 53 rue des Martyrs, 38026 Grenoble Cedex, France

# Outline

- 1/ Overview of the work
  - Hydrogen plasma mechanisms
  - Experimental tasks
- 2/ Experimental set-up and diagnostics
  - Camembert III ion source
  - Laser-induced photodetachment and electrostatic probes
- 3/ Results
  - Optical emission spectroscopy (OES)
    - Degree of dissociation of H<sub>2</sub>
  - Laser photodetachment & Langmuir probe
    - Floating regime
    - Positively biased regime

4/ Conclusions

### 1/ Hydrogen plasma mechanisms



#### **Experimental tasks**



#### 2/ Experimental set-up

#### Dipolar microwave (@ 2.45 GHz) plasma sources ( × 7)







### Photodetachment diagnostic

#### Nd-Yag Laser(@1064 nm)



### Photodetachment and LP diagnostics

#### Laser beam





- 30 mm displacement width to investigate the surface vicinity.
- Samples:
  - disc, Ø 70 mm (Raw graphite, Ta)
  - square,  $10 \times 10$  mm (HOPG)
- Laser beam:
  - 0.093 J/cm<sup>2</sup> (@ 1064 nm),
  - Ø9 mm
- L-bend Langmuir probe:
   Ø 0.5 mm, I ≈ 17 mm
- Emissive probe

#### 3/ Results of OES measurements

$$D = \frac{[H]}{2[H_2] + [H]} = \frac{[H]/[H_2]}{([H]/[H_2]) + 2}$$



3/ Results of laser photodetachment measurements (floating regime)

- Floating samples
   Raw graphite disc (Ø 70 mm)
   HOPG sample (10 × 10 mm)
- H<sub>2</sub> plasma
  - 1 mTorr / 1000 W



#### Raw graphite floating disc



#### HOPG floating sample



#### Comparison with Ta and stainless steel (floating regime)

#### Cold walls regime



# 3/ Results of laser photodetachment measurements (bias regime)



Sample bias (V)

# 3/ Results of laser photodetachment measurements (bias regime)

- Positive bias (+15 V) Raw graphite disc (Ø 70 mm) HOPG sample (10 × 10 mm)
- H<sub>2</sub> plasma
  - 1 mTorr / 1000 W



### Raw graphite disc biased (+ 15 V)



#### HOPG sample biased (+ 15 V)



#### Comparison with Ta and stainless steel (bias regime)

Cold walls regime



#### Comparison of negative ion density



### 4/ Conclusions

- The wall temperature modifies the gas temperature and the degree of dissociation of H<sub>2</sub>
- For all materials the increase of [H] induces an increase of n<sup>-</sup>
- In floating regime: analogous n<sup>-</sup> and n<sub>e</sub> profiles
   *surface-vicinity mechanisms* at work
- In positive bias regime: analogous n<sup>-</sup> and plasma potential profiles
   *surface-vicinity mechanisms* and electrostatic phenomena at work (to be confirmed)
- HOPG graphite very promising to efficiently produce vibrationally-excited H<sub>2</sub>
   n<sup>-</sup> increases by 20 % for a very small surface

   (and by 155 % for a surface of tantalum roughly 38 times larger)

#### 3/ Results of Langmuir probe measurements

(biased regime)



Results of Langmuir probe measurements (Floating & biased regime)



### Comparison of negative ion density



#### Results of Langmuir probe measurements (biased regime)



### **Experimental set-up**



## Laser photodetachment



# 4./ Results (Photodetachment)



# 4./ Results (Photodetachment)



## Sample Bias



Collected current (A)