H⁻ formation by scattering of hydrogen atoms/ions on carbonaceous surfaces

H. Khemliche, N. Bundaleski, V. Esaulov, P. Roncin

Laboratoire des collisions atomiques et moléculaires Université Paris-Sud 11, Orsay, France

Bouillabaisse

Fundamental processes: metals v.s. insulators

Experimental approach: grazing incidence

Limited number of inelastic processes \Rightarrow access to individual basic processes

Fundamental processes: metals v.s. insulators

H. Winter, Progress in Surface Science **63**, 177, 2000 A.G. Borisov, V. Sidis

Negative ion formation from neutrals:

- threshold in parallel velocity (kinematic effect)
- competition between capture and electron loss

Incident atoms with low energy \Rightarrow very low yield of negative ions... ...unless surface has a low work-function (Cs)

Fundamental processes: simultaneous double capture

At low energy, it is easier to capture two electrons rather than one !!!

Systemes where double capture has been obeserved:

- F^+ on LiF(001) $\Rightarrow F^-$ fraction ~ 40 %
- O^+ on NaCl(001) $\Rightarrow O^-$ fraction ~ 7 %
- H^+ on NaCl(001) $\Rightarrow H^-$ fraction ~ 1 %

Results from diamond

CVD grown diamond, naturally hydrogenated

- band gap $\sim 5.5~eV$
- very deep valence band
- negative electron affinity (-1 eV), depending on H surface coverage

 \Rightarrow Virtually very good candidate for negative ion formation & survival

	СВ	
5-	gap	H ⁻ (0.75eV)
10		
15	VB	H° (13 6eV)
20		(15.00 V)

Projectile E=1 keV	Fraction of H ⁻ (%)
H^+	2.5 ± 0.5
H°	3.0 ± 0.8
H_{2}^{+}	1.6 ± 0.5

Résults with H₂⁺ in agreement with literature (Wurz P., Schletti R. and Aellig M.R., Surf. Sci **373**, 56, 1997)

<u>Conclusion</u>: CVD diamond behaves like a common ionic insulator (LiF, NaCl)

 \Rightarrow survival of transient H⁻ favored by band gap

Results from graphite, first glance...

Graphite HOPG

- semi-metal (conductor)
- work-function $\sim 5 \text{ eV}$
- deep valence band

CB

5

10

H⁻(0.75eV)

Results from graphite, more...

- H⁻ fractions barely depend on incident charge state (efficient neutralizaton of H⁺)
- variation with E_{total} (competition capture/loss) is comparable to that observed on LiF(001) !
- H⁻ fractions increase with E_{\perp} \Rightarrow is there a maximum in En?

Results from graphite, more...

These results are characteristic of a clean graphite:

- H- fraction increases after annealing to 600°C (no contamination)
- low defect concentration

\Rightarrow Influence of contamination and defects (plasma conditions) on H⁻ production ?

Conclusions

<u>Diamand:</u>

- results below expectations (not better than LiF)
 - \rightarrow question over actual H surface coverage
 - \rightarrow question over surface quality

<u>Graphite:</u>

- -H- fractions unexpected and promising (capture from H°)
- possible to get more than 10% H⁻ for normal energies > 5 eV
- \rightarrow Formation mechanism not clear
- \rightarrow HOPG is either a metal (energy loss) or an insulator (H- yield, e- emission)

Energy loss spectrum

Perspectives

It seems that carboneceous materials offer good surprises

- -Extend our work on graphite and possibly on hydrogenated diamond
 - \rightarrow exploit energy loss data in coincidence with electron emission
 - ightarrow go to larger incidence angles (avoid detachment)
 - \rightarrow investigate graphite with H and/or defects
- investigate other carbon based materials (C_{60} ...)

Best candidate material (in theory):

