Polycyclic aromatic hydrocarbons, evaporating very small grains and H₂ in photodissociation regions

Christine Joblin Centre d'Etude Spatiale des Rayonnements Université de Toulouse – CNRS

"Elementary mechanisms of hydrogen / carbon-surface interactions" ARCHES workshop Marseille, 27-28 October 2008

• The Aromatic Infrared Bands (AIBs) – which carriers (PAHs, C-VSGs)?

Role of the PAHs / C-VSGs in H₂ formation in photodissociation regions

• The laboratory approach

PAHs revealed through the mid-IR emission of PhotoDissociation (UV-irradiated) Regions

« Infrared Space Observatory » ESA; 1995-1998

« Spitzer Space Telescope » NASA; 2003-2009

SST IRAC 8 µm image – NGC 7023 *Werner et al. 2004, ApJ Supp 154, 309*

Interstellar dust : from grains to aromatic molecules From Désert et al. 1990, A&A 237, 215

PAHs in the dust cycle

What can we learn on PAHs from the analysis of the AIB spectrum?

Photoprocessing of AIB carriers Mild excitation conditions Ex: NGC 7023 PDR

Rapacioli, Joblin, Boissel, 2005, A&A 429, 193 Tielens 2008, ARA&A, in press

Programme SPECPDR on Spitzer Berne, Joblin et al. 2007, A&A 469, 575 PAH Map

VSG Map

VSG spectrum

Ced 201 B9.5 V star

PAH spectrum

Abundance of H_2 in PDRs + spatial coincidence with the Aromatic Ir Bands Formation of H_2 in PDRs related to the photophysics/chemistry of PAHs/C-VSGs

C-VSGs and H₂ emission in PDRs - SPECPDR on Spitzer H₂ 0-0S(0) @ 28 μm / C-VSGs (contours)

Joblin et al. 2008

C-VSGs and H₂ emission in PDRs - SPECPDR on Spitzer

$H_2 0-0S(3) @ 9.7 \mu m / PAH emission (contours)$

H₂ 28 μm C-VSG emission

H₂ emission in PDRs

Unexpected rotationally excited H_2 in low/moderate excited PDRs.

Observations of H₂ in PDRs

- PDRs are regions rich in UV photons, where the gas temperature is high and the dust temperature is higher ($T_g \sim 50$ K).
- Need for a high formation rate of H₂ in PDRs *Habart et al. (2004, A&A)*
- Role of chemisorbed H (reactivity of physisorbed H atoms not efficient enough) *Cazaux & Tielens (2004, A&A)*
- Excitation : collisions, UV pumping, formation process. Unexpected rotationally excited H₂ concerns a small fraction of excited H₂ (few percents). Role of advection? Formation process?

Habart et al. (2007, A&A, subm.) – Joblin et al. (2008)

Proposed candidates for "evaporating" VSGs

PAH clusters [PAH_n]^{+/0}

ISOCAM up to 16 μ m: N_C~400 atoms *Rapacioli et al. 2005, A&A 429, 193* Spitzer up to 35 μ m: N_C few 1000 atoms *Berne et al. 2007, A&A 469, 575*

The PIRENEA set-up for astrochemistry FTICR-MS with cold cell

C. Joblin, M. Armengaud, P. Frabel, C. Pech, P. Boissel

 $C_{24}H_{12}^{+} \rightarrow C_{24}H_{11}^{+} \rightarrow \dots C_{24}^{+}$ by successive H losses Dissociation kinetics of $C_{24}H_{2p+1}^{++}$ ~10 times faster than $C_{24}H_{2p}^{+++}$

Photodissociation of PAHs / theory

DFT calculations / B3LYP/6-31G** Jolibois et al. 2005, A&A, 444, 629

PST model + DFT Dissociation rate - E_d =4.8 eV *Pino et al., 2007, J. Phys. Chem. A*

Theoretical study - dissociation of $C_{10}H_8^+$

In PDRs ($hv \le 13.6 \text{ eV}$), higher-energy dissociation channels are efficient only for small PAHs

Low-energy dissociation channel of PAHs : -H

Still to be studied, irradiation of [PAH-H]⁺ with H atoms *Bauschlicher 1998, ApJ 509,L125*

Formation of H ₂		TABLE 1 SUMMARY OF THE B3LYP/4-31G RESULTS	
mediated by PAHs		(IN UNITS OF KCal mol -)	
		Reaction	Value
Bauschlicher 1998, ApJ 509, L125		Bond Energies	
p p		$(a) C_6H_6 \rightarrow C_6H_5 + H \dots$	110.3ª
ma a		$(b) \mathbf{C}_{10}\mathbf{H}_8^+ \rightarrow \mathbf{C}_{10}\mathbf{H}_7^+ + \mathbf{H} \dots$	111.93
$\gamma \gamma \gamma$	Elev-Rideal abstraction	(c) $\mathbf{C}_{10}\mathbf{H}_7\mathbf{D}^+ \rightarrow \mathbf{C}_{10}\mathbf{H}_7^+ + \mathbf{D}$	113.93
- g - g - g	DET 1 1	$(d) \mathbf{C}_{10}\mathbf{H}_9^+ \rightarrow \mathbf{C}_{10}\mathbf{H}_8^+ + \mathbf{H} \dots$	62.09
7 Y	DF1 calculations	$(e) \mathbf{C}_{10}\mathbf{H}_{8}\mathbf{D}^{+} \rightarrow \mathbf{C}_{10}\mathbf{H}_{8}^{+} + \mathbf{D} \dots \dots \dots \dots$	64.00
الله المراجع ا		$(f) C_6 H_7^+ \rightarrow C_6 H_6^+ + H \qquad \dots$	75.88
1-hydronaphtnaiene cation	Now regults on C. H	$(g) \mathbf{C}_{10}\mathbf{H}_{10}^+ \rightarrow \mathbf{C}_{10}\mathbf{H}_9^+ + \mathbf{H} \dots$	45.81
~ ~ ~ ~	New results on $C_{24}H_{12}$	$(h) H_2 \rightarrow H + H \dots$	103.67 ^b
prind	Rauls & Hornekaer 2008,	$(i) C_{10}H_9 \rightarrow C_{10}H_8 + H \dots$	29.45
a I b	ApJ 679, 531	$(j) \mathbf{C}_{10}\mathbf{H}_{10} \rightarrow \mathbf{C}_{10}\mathbf{H}_9 + \mathbf{H} \dots$	73.96
part		Barrier Heights ^c	
° J J~	+ preliminary lab. results	(1) $C_{10}H_9^+ + H \rightarrow C_{10}H_8^+ + H_2$	-0.25
1.2-dihydronaphthalene cation	talk L. Hornekaer	(2) $C_{10}H_8D^+ + H \rightarrow C_{10}H_8^+ + HD$	-0.66
-,,,,,,,,,,-		(3) $C_{10}H_8D^+ + H \rightarrow C_{10}H_7D^+ + H_2 \dots$	-0.20
2 2 2 2 2		(4) $C_{10}H_9^+ + D \rightarrow C_{10}H_8^+ + HD$	-0.002
-2-2-2-		(5) $C_6H_7^+ + H \rightarrow C_6H_6^+ + H_2$	0.52
a l		(6) $C_6H_6D^+ + H \rightarrow C_6H_6^+ + HD$	-0.11
abstraction saddle point		(7) $C_6H_6D^+ + H \rightarrow C_6H_5D^+ + H_2 \dots$	0.35
Need for molecular dynamics simulations		(8) $C_6H_7^+ + D \rightarrow C_6H_6^+ + HD$	0.73
***soon : installation of *The experimental values are 109.8 (Lias et al. 1 and 109.4 kcal mol ⁻¹ (McMillen & Golden 1982			t al. 1988) 1982).

an H source on PIRENEA***

^b The experimental value is 103.268 kcal mol⁻¹ (Huber & Herzberg 1979). ^c A negative barrier height indicates that the barrier

is below the energy of the reactants

Photodissociation of [PAH],⁺ in PIRENEA

MOLDEN

 $G_{24}H_{12}^{+}$

0.3

Candidates for evaporating VSGs Pure [PAH],⁺ vs the depletion of (heavy) elements

• proposal that Fe can easily form complexes with PAH in the 1990s *Serra et al. 1992, A&A 260, 489*

• other "metals" such as Si can be involved *Klotz et al. 1995, A&A 304, 520*

easy formation of [SiPAH]⁺, [FePAH]⁺, [FePAH₂]⁺ by radiative association
 Dunbar et al, 1994, JACS 116, 2466 ; Pozniak & Dunbar 1997, JACS 119,

10439

• signatures of [SiPAH]⁺ π complexes in astronomical spectra *Joalland et al. 2008, A&A*

• [Fe_xPAH_y]⁺ candidates for evaporating VSGs

Photodissociation of [Fe_mPAH_n] *
 New analogues for evaporating VSGs
 Simon & Joblin, 2008, subm. > Contrary to Si, Fe can form [FePAH₂]* complexes

 \succ Formation of [Fe_xPAH₂]⁺. Heating by UV-visible radiation

Dunbar et al, 1994, JACS 116, 2466

Photodissociation of [Fe_mPAH_n] + Simon & Joblin, 2008, subm.

$$[Fe_{3}(C_{24}H_{12})_{2}]^{+} \xrightarrow{Fe} [Fe_{2}(C_{24}H_{12})_{2}]^{+} \xrightarrow{Fe} [Fe(C_{24}H_{12})_{2}]^{+} \xrightarrow{Fe} [Fe(C_{24}H_{12})_{2}]^{+} \xrightarrow{Fe} [FeC_{24}H_{12}]^{+} \xrightarrow{Fe} [C_{24}H_{12}]^{+}$$

 \geq [Fe_x(C₂₄H₁₂)₂]⁺(x=1-3) dissociate by sequential loss of Fe and C₂₄H₁₂ units

Gas-phase Fe more tightly bound than Si :

 E_b (Fe-PAH)=2.6 eV vs E_b (Si-PAH)=1.5 eV

could contribute to the highest depletion of Fe relative to Si in the diffuse ISM

How much Fe could be included in such grains?
 Some destruction in PDRs, more in HII regions. Abundance of Fe released from grain destruction ~5%. Would imply 2 Fe per PAH assuming [PAH]/[H]=7 10-7

Current status: PAHs, VSGs and H, formation

- ▶ Based on observational and laboratory results, free PAHs are not attractive candidates to account for the formation of H_2 in PDRs
 - ✓ Still some work to do to study if H₂ could be formed by irradiation of hydrogenated PAHs with H atoms (Eley-Rideal abstraction mechanism)
 - \checkmark Physisorption of H_2 on PAHs
 - *E_{phys} of H₂ on PAHs 5.2 kJ mol⁻¹ (0.05 eV) Trans et al. 2002, J. Phys. Chem. B* 106, 8689 - This workshop : Ellinger & Pauzat 3.5 and 7.2 kJ mol⁻¹ (0.035-0.07 eV) – Heine et al. 2004, PCCP 6, 980
- Search for candidates for evaporating C-VSGs
 - Clusters containing PAH, Si and Fe are candidates for evaporating VSGs
 - \checkmark New catalytic chemistry (H_2 formation,...)?
 - ✓ Trapping possibilities: porosities, active site (Fe) → higher binding energies Ex : organometallic complexes made of fullerenes and transition metals are good candidates for H₂ trapping (max H₂ storage up to 9 wt %)
 Zhao et al. 2005, PRL 94, 155504

Thanks

- A. Simon (CESR), B. Joalland (CESR)
- O. Berne (CESR)
- Technical team of PIRENEA : M. Armengaud, A. Bonnamy, P. Frabel, L. Nogues

• CNRS / Programme National Physique et Chimie du Milieu Interstellaire

Formation H_2 /excitation (Théorie - D. Lemoine - LCAR)

FIG. 7. Product H_2 vibrational (P_z) and rotational (P_j) distributions, for two incident energies, 0.04 eV and 0.3 eV, for the chemisorbed-H, rigidpuckered lattice case.

FIG. 9. Same as Fig. 7, but for the chemisorbed-H, relaxed-surface case.

Sha, Jackson, Lemoine, 2002, J. Chem. Phys. 116 (16), 7158

New analogues for interstellar PAHs Signatures of [SiPAH]⁺ π -complexes

DFT calculations Joalland et al. 2008, A&A, subm.

→ Fingerprints: expected blueshift for the 6.2 and 11.2 μ m bands ($\Delta\lambda$ ~0.2 μ m)

Signatures of [SiPAH]⁺ π-complexes Joalland et al. 2008, A&A, subm.

Proposed signatures for [SiPAH]⁺ : - the 11.0 µm sideband
 blue wing of the 6.2µm and/or the 6.0 µm sideband

>>10% of the PAH population (based on the IR band ratios at 11µm)
 →>4% of gas-phase Si in the Red Rectangle [PAH]/[H]=7 10-7
 What about Fe ?

Signatures of [FePAH]⁺ complexes Simon & Joblin, 2007, JPCA 111, 9745. Simon et al. 2008, JPCA

IR absorption spectra calculated with DFT at the MPW1PW91/6-31+G(d,p) level of theory

Main effect on PAH⁺ spectrum: decrease of the intensities in the [6-10] μm range

BUT: no obvious signatures to identify [FePAH]⁺ species

Aromatic IR bands / polycyclic aromatic hydrocarbons (PAH)

Stochastic heating
 N~50 ; T~1000 K
 Sellgren (1984), ApJ 277, 623

Candidates: PAH molecules Léger & Puget 1984, A&A 137, L5 Allamandola, Tielens & Barker 1985, ApJ 290, L25

> 10 to 20% of total carbon $X_{PAH} \sim 10^{-7} (N_C \sim 50)$

3.3 μm (3050 cm⁻¹); 6.2 μm (1610 cm⁻¹);
" 7.7 " μm (1300 cm⁻¹); 8.6 μm (1160 cm⁻¹);
11.3 μm (890 cm⁻¹); 12.7 μm (785 cm⁻¹)
CH and CC aromatic modes

[PAH_n] a model for VSGs

Rapacioli, Joblin, Boissel, 2005, A&A 429, 193

Berné et al., 2008, A&A 479, L41

Spatial correlation between Extended Red Emission (600-800 nm) and the transition VSG/PAH or PAH/VSG

Spectroscopy : PAH dimers (closed-shell cation dimers) as good candidates
 for ERE *Rhee et al.*, 2007, PNAS 104, 5274

Photoprocessing of AIB carriers – high excitation conditions Planetary nebulae / Protoplanetary disks Joblin, Szczerba, Berne, Szyszka, 2008, A&A Berne et al. 2008, submit

http://arxiv.org/abs/0809.1532

Berne et al. 2008, submitted

Proposed candidates for PAH^x

Main spectral feature: 7.6 μm band of PAHs redshifted to 7.9 μm

IR spectroscopy / DFT
 calculations -> large charged
 PAHs (cations and anions)

Bauschlicher, Peeters, Allamandola, 2008, ApJ 678, 316)

Formation/ destruction of [PAH], clusters in PDRs

Rapacioli, Calvo, Joblin et al. 2006, A&A 460, 519

Need for fundamental data

Molecular dynamics simulations

Microcanonical approach Joblin et al., 2002, Mol. Phys.100 (22), 3595

 $k_{IR}(E_{intra})$ of isolated molecules

Analysis of the mid-IR spectrum in planetary nebulae

Joblin, Szczerba, Berne, Szyszka, 2008, A&A, in press

Formation/ destruction of [PAH], clusters in PDRs

Rapacioli, Calvo, Joblin et al. 2006, A&A, 460, 519

NGC7023 NW (1300 G_0) n_{H} ~7 10³ cm⁻³ \Rightarrow τ_{form} .~ 10⁵ years $\tau_{evap} \sim few years for (C_{24}H_{12})_{13}$ Multiple photon absorption ⇒ Medium-sized PAH clusters cannot survive (C₂₄H₁₂)₄ 20 A_v=0.41 Events (%) 10 5 (b) 20 $A_{v}=5.0$ Events (%) 10 5 5 7 9 11 13 15 E_{diss} (%)

⇒ surdensity (clumps) n_H~10⁶ cm⁻³
 ⇒ larger clusters (larger units, increased stability by charge effect, Fe,...)
 E_{C24H12-(C24H12)n-1}~ 1 eV
 ⇒ dynamical process : continuous photo-evaporation of preformed clusters

⇒ NFFD for FUNDAMENTAL DATA