GDR ARCHES

Chimisorption d'un second hydrogène en présence d'un premier sur une surface graphitique : conséquences pour la formation de H₂

> Damien Bachellerie Nathalie Rougeau Victor Sidis Muriel Sizun Dominique Teillet-Billy

Laboratoire des Collisions Atomiques et Moléculaires

CNRS & Université Paris Sud 11 (UMR 8625) Orsay

Hydrogen atom interaction with carbonaceous surfaces : interest

- hydrogen adsorption on interstellar grains and catalytic formation of molecular hydrogen
- hydrogen storage (nanotubes, graphite substrate, ...)
- hydrogen interaction with fusion reactor walls

Density < 1000 atoms per cm³

Temperature : 10K – 100 K

H₂ formation in the ISM

Silicates and carbonaceous material

4nm – 0.1 μm

PAH like

Present :

Single and Double H atom adsorption on a cluster model of a graphite surface

Characteristics of H atoms adsorption

- Energy
- Adsorption barrier
- Second adsorption : site and spin effects

Consequences for the formation of the H₂ molecule (Eley-Rideal mechanism)

Theoretical approach

- DFT (ADF code/ cluster calculation)
 - DFT : spin unrestricted Kohn-Sham
 - Basis (triple ζ + polarization)TZP Slater-type orbitals
 - Exchange-Correlation interaction functional :

LSDA + GGA (PW91)

- Cluster model for graphite surface (PAH)

coronene molecule ($C_{24}H_{12}$)

Graphite-like coronene C-C 1.415 Å

Single H atom adsorption on a cluster model of a graphite surface

(Sidis et al 1999, 2000)

Single H atom adsorption on a cluster model of a graphite surface

(Sidis et al 1999, 2000)

-Chemisorption CH bonding ; C sp² \rightarrow sp³

-The activation barrier prevents H adsorption in InterStellar Medium

Double H atom adsorption on a cluster model of a graphite surface

Previous work : Miura et al 2003, Ferro et al 2003, Hornekaer et al 2006

Present : Characteristics of two H atoms adsorption

- Energy
- Adsorption barrier
- Second adsorption : site and spin effects

Sites 2 atoms on the same carbon ring

ortho (adjacent) meta

para (opposite)

Double H atom adsorption on a cluster model of a graphite surface Energy

site : **para** double adsorption energy : **-2.04eV**

site : **meta** double adsorption energy : **-0.76eV**

site : **ortho** double adsorption energy : **-2.16eV**

(with respect to 3 isolated fragments)

- Stronger chemisorption energy

on ortho and para sites (≈-2eV)

Double H atom adsorption on a cluster model of a graphite surface Energy

Spin $\uparrow \downarrow$

site : **para** double adsorption energy : **-2.04eV**

site : **ortho** double adsorption energy : **-2.16eV**

Spin $\uparrow \downarrow$ - Stronger chemisorption energy

on ortho and para sites (≈-2eV)

PAH molecule + H + H \rightarrow

spin **paired** state spin **unpaired** state

 \rightarrow

Double H atom adsorption on a cluster model of a graphite surface

ARCHES : Report on the collaboration with Yves Ferro et al on Wednesday ...

Potential energy curves

Para site, spin $\uparrow \downarrow$: No activation barrier for adsorption of the second H atom

Rougeau et al 2006 ; Hornekaer et al 2006

Potential energy curves

Para site, spin $\uparrow \downarrow$: Chemisorption strictly on top No activation barrier for adsorption of the second H atom Barrier-less chemisorption possible without C_{II} relaxation There is an **activation barrier** for the adsorption of a second H for all other cases :

- at ortho and meta sites for paired $\uparrow \downarrow$ and unpaired $\uparrow \uparrow$ spins
- at para site for unpaired 1 spins

Potential energy curve

Para site, spin 11: Activation barrier similar to the barrier for single atom adsorption

Double H atom adsorption on a cluster model of a graphite surface

Characteristics of two H atoms adsorption Energy

site : ortho spin : ↑↓ double adsorption energy : -2.16eV

Geometry for the double adsorption on ortho : not on top, similar to cis substituted « ethane » Contribution of CH bonds repulsion to chemisorption energy for $\uparrow \downarrow$: ~-1eV !

Ortho and meta sites There is a **barrier to adsorption** of the second H for **paired** $\uparrow \downarrow$ **and unpaired** $\uparrow \uparrow$ spin states (height 0.16 to 0.29eV)

H atoms Adsorption :

-The « impurity/defect » allows an H adsorption without barrier -With Spin selectivity (paired $\uparrow \downarrow$) and site selectivity (para)

This should have consequences on H₂ formation on ISM

Eley-Rideal formation of H_2 involving one of two para-chemisorbed H atoms on a graphite surface.

An important question : energy sharing

Internal energy of the nascent molecule, kinetic energy of the molecule, C-surface vibration

Available energy : **3.00eV**+Ecoll+ZPE

Eley-Rideal formation of H₂

involving one of two para-chemisorbed H atoms on a graphite surface

Newly computed 3D (C_{II} , H_a , H_b) potential energy surface

Quasi-Classical molecular dynamics

Comparison with the formation of H_2 involving a single H atom chemisorbed on a graphite surface

Morisset et al (2003, 2004)

- Quantum Dynamics (QWPP quantal wavepacket propagation)
- Classical Dynamics (QCT quasi classical trajectory)
- (3 D calculations : collinear geometry)

Available energy : **4.10eV**+Ecoll+ZPE

QCT calculations

QCT calculations

Eley-Rideal Reaction probability

Available energy : **4.10eV**+Ecoll+ZPE ; **3.00eV**+Ecoll+ZPE