Strong ro-vibrational excitation in high flux expanding plasmas

Influence of volume and surface processes and negative ion production

Daniel C. Schram

Eindhoven University of Technology, The Netherlands FOM-Institute Plasma Physics, Nieuwgein advisor Arches GDR, 20-23 may 2007

Work from: O. Gabriel, R. Engeln, T. Hansen, R. Zijlmans, J.van Helden, G. Yagci,

Contents:

Surface association H₂(r,v)

Surface mechanisms

► Importance chemistry: H⁺ & H⁻

≻ Molecules at surface in N₂, NH₃, O₂, NO

≻Molecules in H-N-O-C

➢Global picture?

Support: NWO, FOM, -Rijnhuizen, Euratom, CPS Eindhoven

Contributions/ Acknowledgement

Plasma physics/chemistry- group PMP: M. van de Sanden, R.Engeln, E.Kessels, A.Creatore, R. Pipino, E.Aldea, O.Gabriel, G. Ledru G. Yagci, R. Westerman, I. Martin, S.Starostine, P.v.d.Oever, PhD: J.v. Helden, R.Zijlmans, J.Gielis S.Heil, B.Hoex, I.Volintiru, T. Hansen E.Langereis, M.Petcu, P.Gevers, H.Knoops, K.Nadir

A.Husken, M.v.d.Sande,H.d.Jong J.Jansen, J. Zeebrechts; Secr. J.Loonen, L. Doms

Work shown from collaboration with Institut für Niedertemperatur Plasmaphysik (INP) Greifswald, Germany J. Röpcke, G. Lombardini, O. Gabriel, S. Welzel, S. Stancu

Support: FOM, STW, TNO, NWO, AKZO-Nobel, Fuji, GE, Philips, OTB, ..²

labs

Deposition (a-C:H)

H₂(r,v), H plasmas

$H + H \rightarrow H_2(r,v)$

>generation of (excited!) molecules $H_2(r,v)$ at high flux H atoms

Accidentally found in search for fast deposition processes:
 Anomalous recombination of atomic ions (MAR)
 High rotational(and vibration) excitation

Fast deposition: m² and nm/s: large fluxes of radicals: 10²² – 10²⁴ m⁻² s⁻¹ high flux to surface: 10⁴ ML/s: other situation?
High flux of precursors: high gas & energy efficiencies, like particle sources

Plasmas: ionizing \rightarrow recombining; plasma dissociates, surface associates

Fusion/ astrophysics

Nuclear Fusion: JET

Astrophysics

IC 1396 H-Alpha Close-Up ,Nick Wright, University College London

H_{α} light: could be from molecules + ions

Summary approach

Is plasma different from CVD/ Catalysis?:

Radicals (%) dominate surface \rightarrow passivated surface

- 1. production plasma
- **2. production radicals**
- 3. transport: radicals may be transformed, but remain radical
- 4. radicals to surface, reflect, built up density, finally absorbed
- 5. adsorbed fragments give new molecules, which desorb
- 6. new molecules add to injected molecules: gas may change totally!

Fast depo a-C:H with ETP method

>10 % ionized plasma beam: Ar⁺, expands: high n_e, low T_e=T_h plasma
>Charge transfer & dissociative recombination produce C₂H radicals (and H)
>Ar⁺ + C₂H₂ → C₂H₂⁺ + Ar
>C₂H₂⁺ + e → C₂H + H; → surface depo + H₂ generation
> *Radical production & recombination* of atomic ions from source

With expanding thermal plasma (ETP) method: Remote source deposition High flux of precursors: high deposition rate + generation (H_2 ..) molecule

Note: wth CH₄: C₂H₂ & H₂ production & depo

Results fast deposition, a-C:H, ..

Fast deposition 100 nm/s of diamond like carbon: DLC *example: higher growth rate: better, more dense, hard thin layer!* Q: deposition *"physical" or "chemical"*? "Ion pinning" *and* "radical radical"?

Quality depends on $T_{substrate}$ & rate, not on injected mol: CH_{ϕ} , $C_{2}H_{\phi}$, $C_{2}H_{6}$. $C_{2}H_{2}$

8

Use of H atoms: fast deposition a-, nc- Si:H

≻Also H atoms can be used for radical production:
≻Ar/H₂ in source → mainly H atoms
≻H atom source: H + SiH₄ → SiH₃ +H₂; SiH₃ soft radical: depo good a-Si:H
≻High rate 10 nm/s at elevated T_{substrate} 400 C

With more H atoms: nano crystalline layers: nc Ci:H more SiH₂, SiH, Si = harder radicals?

Type radical determines structure/ quality layer. Is it the only solution? Can we separate deposition + annealing? achieve higher rates! : mechanism: strategy

Deposition: Motivation for $H \leftarrow \rightarrow H_2(r,v)$ high flux

Questions:

In how far is mechanism essential for reaching dense material and proper structure.
Is amount of H atoms essential ingredient?

Is it the essential factor for nc-Si:H?

Is r,v excited H₂ an important factor?

Other questions:

Is depo + annealing an (fast) alternative? Is the exact nature of radicals important? Or is it more chemical?

→Mechanism of deposition at surface and mechanism of molecule formation at high flux

Cool expanding plasmas (T ~ .3 eV)

In remote source approach: ETP! high flux radicals and/or ions simple heavy particle kinetics: charge transfer/ abstraction.. low T_e: no e- excitation/dissociation

Light: signature of ions/electrons + molecules

Ar, Ar⁺ e expansion: weak (3p) ion recombination → 4p-4s red emission + blue continuum

With H₂: Ar/ H₂ expansion: strong recombination by: Ar⁺ + H₂ → ArH⁺ + H, ArH⁺ + H → H + H* → Balmer a

Pure H₂ expansion: even stronger recombination: *"MAR" molecular assisted recombination*

Effect of H₂ molecules

Ar plasma +

Effect of H₂ molecules on Ar plasma expansion: MAR!

$$Ar^{+} + H_{2} \rightarrow ArH^{+} + H$$

$$ArH^{+} + e \rightarrow Ar + H^{*}$$

$$\downarrow$$

$$\bigvee$$

$$Balmer \alpha$$

 $1\% H_2$

5% H₂

40 Pa: $n_{H2} \sim 10^{19} \text{ m}^{-3}$

Kinetics with molecules: H₂, ...

Pure H₂ expansion: very strong recombination at lower n_e: MAR

 $H^+ + H_2(r,v) \rightarrow H_2^+ + H; H_2^+ + e \rightarrow H + H^*, red light$

 $e + H_2(r,v) \rightarrow H^- + H; H^- + H^+ \rightarrow H^{***} + H, blue light$

At high electron density ($n_e > 10^{19}-10^{20} \text{ m}^{-3}$): H*--H*** re-ionized. But at lower densities: catastrophic decrease of ionization: very fast loss of ions and electrons and thus light

Essential: vibrational/ rotational H₂(r,v)

Additional e & ion recombination (MAR)

Similar (but less fast): with other molecules: O₂, N₂, CH₄,...

Summary kinetics

Plasma dissociates (by MAR..), surface associates:

- **1. Plasma: ions + electrons: + molecules:**
- 2. Charge transfer + dissociative recombination \rightarrow radicals
- 3. Radicals remain radicals during (fast) transport to surface
- 4. Radicals to surface, reflect, built up density, finally absorbed
- 5. Adsorbed fragments give new molecules, which desorb
- 6. New molecules add to injected molecules: gas may change totally!

Note: desorbed molecules are not so dependent on type radical

Expansion, plasma beam, recirculation

Expansion: supersonic density ~ Z_0^2/Z^2 ; (z_0 ~ radius source) temperature adiabatic T/T₀ ~ $(n/n_0)^{\gamma-1}$ velocity: at exit sonic, $c_0 \rightarrow 2c_0$ "Valley" just before shock front **Stationary shock front:** $z_{\rm M} = 2 \ 10^{-2} \ ({\rm flow}/{\rm p})^{1/2} \ ({\rm AT_0})^{1/4}$, flow in scc/s Subsonic plasma beam (radius $\sim z_{M}$): 1E22 1E21 40 Pa (Meulenbroeks) 133 Pa (v.d.Sanden) - 13 Pa (v.d. Sanden) 10 Pa (Vankan) 100 Pa (Mazouffre) 1E20 -40 Pa (Vankan) -•-40 Pa (v.d.Sanden) 10 100 Axial position (mm)

Density

plasma expansion + beam: .3 msec **Re-circulation: 10 msec Residence time: 1 sec** 15

Invasion & mixing in from background

Mass de-focusing: light particles scatter out

Invasion: rarefied conditions: $\lambda_{mfp} \sim z_M$ good mixing in supersonic part

Here favorable for chemistry: supersonic velocity/ high T_{heavy}

Also in forward plasma beam: T ~.3 eV , high r,v excitation?

Expansion: z dependence: 1/z² **density**

n(H₂) Rayleigh scattering

Molecule generation

Presence H₂(r,v): CARS

H₂(r,v) First measured by CARS: Coherent Anti-Stokes Raman Scattering *Meulenbroeks et al PRL*

At z = 8 mm from source

```
H_2 plasma, \Phi_{H2} = 3 slm
p = 50 Pa???
```

Total pressure from measurements: $\Sigma n(v,J), T_{rot} \rightarrow p_{vessel}$

H₂(r,v) with VUV-LIF

Vacuum Ultra Violet Laser induced fluorescence Excited with several anti-Stokes lines (Vankan, Gabriel, Engeln et al)

Methodology: Multiplexed VUV-LIF

Multiplex-VUV-LIF => Simultaneous excitation → more v,J-information: 21 also surprises: high J population!!

Multiplexed-VUV-LIF

New results H₂(r,v)

Short nozzle: Population up to close to continuum: higher source T, higher H-flux

Importance density H₂(r,v: accumulated statistical weight G

Molecules produced at surface exit nozzle arc.

In arc: atomic with small

Atomic centre plasma H atoms, H⁺ions/ electrons (10%): Light: mainly continuum (and H_n lines)

"Molecular" periphery: still mainly atoms, some molecules, no ions/ electrons

At interface: out-diffusing H+ ions (charge transfer with H_2) $\rightarrow H_2^+$ $H_2^+ + e \rightarrow H^* + H$, as ne is too low then $H^* \rightarrow H^+$ photons (H_{α} , $Ly_{\beta_{26}}$) Number of molecules needed to kill at interface

Processes in arc

In arc: atomic centre: H, H⁺, e In periphery: mainly H to surface, some H₂ H₂(r,v) from surface, diffuses inward Kills electrons/ions at interface

At interface: in atomic centre: H⁺, e diffuse outward in periphery: some H₂ diffuses inward

Within interface: H⁺ + H₂ → H₂⁺ + H; H₂⁺ + e → H + H*; and if n_e is high enough: H* + e → H⁺ + 2e Outside interface: n_e is too low and H* → H + photons (H_α, Ly_β)

H₂ surface association on nozzle surface

P. Vankan, R. Engeln, D. C. Schram, Appl. Phys Lett. 86, 101501 (2005)

Generation mechanism H₂(r,v)

Generation at nozzle surface High excitation v,J Incident flux H atoms: >10²⁵ m⁻² s⁻¹

 γ ? At these hughe fluxes

Generation H₂(r,v) in expansion?

Generation H₂(r,v) in expansion near surface?

Excited H₂(r,v) molecules from surface? Other experiments

Experiments in •Magnetic multipole •Expanding plasma

•Very similar results. Why?

High J (low v) are unavoidable??

[1] M. Péalat, J.E. Taran, J. Chem. Phys. 82, 4943 (1985)

[2] G. Stutzin, A. Young, A. Schlachter, K. Leung, W. Kunkel, Chem. Phys. Lett. 155, 475 (1989) 32.

[3] P. Vankan, D.C. Schram, R. Engeln, Plasma Sources Sci. Technol. 14, 744 (2005)

Excited H₂(r,v) molecules in space

Calculations T. Millar very similar distributions

Also experimental emission (see yesterdays talk C. Joblin for v=0,1)

High J (low v) are unavoidable??

H.Nomura, T.J.Millar, A&A <u>438</u> (2005) 923

H₂(r,v) generation mechanisms

By electrons: e-v excitation of H_2 by electrons (H_2^- as intermediate) E-v excitation of H_2 by e through high excited states H_2^{**} high T_e required & no J excitation?!

By dissociative recombination of H_3^+ by cool electrons (25 % only) $H_3^+ + e \rightarrow H_2(r,v) + H$ and H + H + H (75%) J excitation!

By associative attachment $H^- + H \rightarrow H_2(r,v) + e$ J excitation! By surface association: $H(s) + H \rightarrow H_2(r,v) + e$ J excitation! As H atom production is largest chemical reservoir this is potentially strongest source of $H_2(r,v)$

Re-distribution by collisions in volume: by electrons, by H , by H_2 and by repetitive $H_2(r,v) + e \leftrightarrow H- + H$

H₂(r,v) generation at surface in past

Surface excitation is possible even at low fluxes

R.I. Hall, I. Cadez, M. Landau, F. Pichou, C. Scherman, Phys. Rev. Lett., 60, 337 (1988)

H₂(r,v) re-distribution

Re-distribution by collisions in volume: by electrons, by H , by H_2 and by repetitive $H_2(r,v) + e \leftrightarrow H^- + H$

By electrons: most probable with small $\Delta J = \pm 2$, highest for high J: \rightarrow ladder climbing in J faster at high J, + vibration excitation \rightarrow Low J states effectively coupled by H, H₂ collisions

→ multiple hockey stick?

Re-distribution by heavy particle collisions: by H atoms?! Only limited cross section data, but again same principle, but with $\Delta E \sim 0$ \rightarrow If $\Delta J = -2$ then $\Delta v = +1$ at higher v, etc

Re-distribution by H^- + H \leftrightarrow H_2(r,v) populates higher J states with preference

Excitation by electron collisions

 $H_2(\mathbf{v},\mathbf{J}) + \mathbf{e} \rightarrow H_2(\mathbf{v}',\mathbf{J}') + \mathbf{e}$ $\Delta \mathbf{J} = \pm 2 \ (\pm 4,...)$

-> cross sections larger for excitations in high rotational levels.

Horacek, J.; Cizek, M.; Houfek, K.; Kolorenc, P. & Domcke, W. Dissociative electron attachment and vibrational excitation of H2 by low-energy electrons: Calculations based on an improved nonlocal resonance model. II. Vibrational excitation *Phys. Rev. A*, **2006**, *74*, 022701

Comparision rate coefficients

VE process:		
$H_2(v,J) + e \rightarrow$	$H_2(v',J') + e$	$k_{max} = 1.0 \cdot 10^{-13} \text{ m}^{-3} \text{s}^{-1} (0,27) \rightarrow (0,29)$
		$k_{min} = 7.4 \cdot 10^{-22} \text{ m}^{-3} \text{s}^{-1} (0,0) \rightarrow (8,2)$
DA process:		
$H_2(v,J) + e \rightarrow$	$H + H_{-}$	$k_{max} = 2.4 \cdot 10^{-14} \text{ m}^{-3} \text{s}^{-1} (0,31)$
		$k_{min} = 6.7 \cdot 10^{-21} \text{ m}^{-3} \text{s}^{-1} (0,0)$
AD process:		
$H + H^{-} \rightarrow$	$H_2(v,J)$	$k_{max} = 5.0 \cdot 10^{-17} \text{ m}^{-3} \text{s}^{-1} (2,22)$
		$k_{min} = 2.6 \cdot 10^{-23} \text{ m}^{-3} \text{s}^{-1} (0,0)$
<i>Only</i> $v \le 1$ <i>and</i> $J \le 15$ <i>:</i>		

Collisions with H:.

 $\mathrm{H_2(v,J)} + \mathrm{H} \rightarrow \,\mathrm{H_2(v',J')} + \mathrm{H}$

$$k_{max} = 7.4 \cdot 10^{-17} \text{ m}^{-3} \text{s}^{-1} (1,3) \rightarrow (1,1)$$

 $k_{min} = 4.0 \cdot 10^{-22} \text{ m}^{-3} \text{s}^{-1} (0,16) \rightarrow (1,0)$

Collisions with H₂(0,0):.

 $H_2(v,J) + H_2(0,0) \rightarrow H_2(v',J') + H_2(0,0)$

$$k_{max} = 6.6 \cdot 10^{-17} \text{ m}^{-3} \text{s}^{-1} (1,3) \rightarrow (1,1)$$

$$k_{min} = 1.8 \cdot 10^{-25} \text{ m}^{-3} \text{s}^{-1} (0,15) \rightarrow (0,1)$$

(5000 K for hydrogen atoms and molecules / 10,000 K for electrons)

Rate coefficient H collisions

$H_2(r,v)$ re-distribution, z dependence

Re-distribution by heavy particle collisions: by H atoms?! Only limited cross section data, but again same principle, but with $\Delta E \sim 0$ \rightarrow If $\Delta J = -2$ then $\Delta v = +1$ at higher v, etc

Re-distribution by H⁻ + H \leftrightarrow H₂(r,v) populates higher J states with preference

40

Expansion: z dependence: 1/z² **density**

n(H₂) Rayleigh scattering

H₂ density follows 1/z² law

Surface mechanisms

H flux large: surface H passivated (& in metal): 3 processes:

In plasmas: large radical fluxes, low T & p: only last two operational?

Production H₂(r,v) at surface

→?Additional absorption: weakly bond atoms on passivated surface

direct pick up (~ hot ER) reaction (~ hot LH)

In plasmas: large radical fluxes, low T & p: only last two operational?

Consequences of H₂(r,v)

Mechanism: t-dependent studies in $O + O \rightarrow O_2$

Surface mechanisms: $O + O \rightarrow O_2$

Pulsed helicon discharge in O₂ at low p: 4 Pa 1 kW @ 13.56 MHz, 1 kG field

Short pulse: O production < 1 monolayer $\tau_{pulse} < \tau_{coverage}$

Long pulse: O production >> 1 monolayer $\tau_{pulse} > \tau_{coverage}$

Measurement with TALIF of O density (t):

Short pulse: low O, short life time Long pulse: high O, long life time

Jun MATSUSHITA^{*1}, Koichi SASAKI^{*2} and Kiyoshi KADOTA Jpn. J. Appl. Phys. Vol. 36 (1997) pp. 4747–4751

Surface mechanisms: $O + O \rightarrow O_2$

O density increases with duration plasma: for duration > 2 msec: full coverage!

Sticking coefficient decreases from: $\gamma \sim 1$ for low coverage to $\gamma \sim .12$ for full coverage:

Chemistry different on fully vovered stainless steel surface

Dependence on p: O life time \leftrightarrow diffusion to surface Loss O: association to O₂ at surface

Mechanism $O + O \rightarrow O_2$ at surface

For a short time $< \tau_{coverage}$ the surface is filled with one monolayer O atoms Then passivated?

New O atoms in less bound states?Higher chance of reflection γ lower!! Depends on flux O atoms?

Excitation: there are signs of significant O_2^* production at surface

N₂* production at surface

N/O: NO₂* generation

$N_2(B \rightarrow A), N_2^+(B \rightarrow X), N \text{ lines}$

NH₃ formation at surface from N₂/H₂ plasmas

- Ammonia formation in: -- Ar⁺/e plasmas with N₂/H₂ in background → N & H radicals
- -- N₂/H₂ source: here reaction
- $N + H_2 \rightarrow NH + H$
- NH, H, (N) radicals → surface

N/H radicals \rightarrow surface with N, H, NH/NH₂ \rightarrow N₂, H₂, NH₃

Efficiency can be high: if H small then near all H ends up in NH₃

NH₃ decreases with increasing O₂ microwave INP

With O. Gabriel, J. Roepcke, S. Welzel, G. Stancu, G. Lombardini, INP Greifswald

mole fraction based on $N_2 + H_2$: NH_3 : < 3-5 % Very similar results: few % NH_3 with no O_2 , strongly decreasing with O_{252} Note: very different surface than in ETP: ss versus Aluminium + Quartz.

Note: mole fraction based on $H_2 + O_2$: $H_2O > 10$ %; similar results in ETP-TU/e very effective use of O for small O_2 flow

Summary molecule formation

•In plasma large production of radicals → large radical flux short surface coverage time, passivated surface

•Surface association dominant mechanism for molecule formation:

 $H + H(s) \rightarrow H_2(r,v)$, similarly $N + N(s) \rightarrow N_2(X,A?)$,

•Surface occupation of precursors determine desorbed molecules: NH₂(s) + H → NH₃; OH(s) + H → H₂O etc

•Formation of H₂, N₂, CO, H₂O dominant 2e level: NO, NH₃, HCN, CH₄, C_nH_m

•Also small organic molecules: H₂CO, CH₃OH, CHOOH

Conclusions

- Expanding thermal plasma very promising: bright source: Ar⁺, H⁺, H, N...
- > Possibility to dissociate each injected molecule within residence time
- Enormous fluxes: passivated surfaces, surface generation of excited molecules
- > In H₂ efficient dissociation and formation H₂(r,v) from less bound states?
- ➢ H₂(r,v) molecules formed at surface: helps H⁻ formation
- Scaled down & with low pressure: promising for H⁻ source
- **>** Formation of other molecules mostly at surface: N₂, O₂, NH₃, NOx, H₂O, CO...
- > Adsorbed fragments at passivated surface: NH₂, OH, N, H....
- Molecule formation: more "chemical", temperature & abundances (in radieals)

Motivation

>Influence of surface in generation of (excited?!) molecules? $H_2(r,v)$

>Influence of these molecules on process: H atoms \rightarrow H₂(r,v) \rightarrow H⁻ ions

Mechanisms of deposition, etching, surface modification, oxidation.....

Efficiency of molecule formation, H₂, N₂, NO, NH₃, CO, C₂H₂, CH₃OH.....

> Mechanisms of molecule formation in interstellar matter: H₂, NH₃, CH₃OH

>Importance negative ions, negative ion sources sources?

Has there been enough done in plasma physics to get the ultimate material?
 Has there been enough effort to get the ultimate effort to obtain e.g. H⁻?₅₆

Invasion of H₂ in expansion of H/H₂

Effect of nozzle-length on H density

Mechanism of excited H₂(r,v) molecules formation

At nozzle surface: concluded from H increase for shorter nozzle length:

Nozzle surface \rightarrow source of H₂(v,J):

Note: at nozzle surface: very high H flux: 10²⁵/s/m² ~ 10⁶ MonoLayers /s despite high surface T: H atom-passivated surface

Evidence excited products: $O + N \rightarrow surface \rightarrow NO_2^*$

N/O to surface' De-sorption excited fragments: shuttle glow If large fluxes N O atoms: orange glow at substrate: shuttle glow:

NO₂* desorption?

Generation of excited molecules

See also flow pattern

Proof of surface production, proof of excited molecules! Speculation: negative ion formation?

Evidence excited products: Nitrogen $N \rightarrow N_2$

In volume: atoms/molecules = ratio time constants: $N/N_2 \sim \tau_N/\tau_{res} \sim 0.1$ At surface: more N than in volume

N association at N passivated surface: \rightarrow Extra light: B \rightarrow A & N₂⁺(B-X), \rightarrow low T_e (0.1eV),

new mechanism at large N flux? ₆₁ : $N + N \rightarrow N_2(B, a, a'?)$