

Hydrogen in Astrophysics and in Laboratory As traleridy Bircon ello

> DMFCI Università di Catania Catania, Sicily Italy

> > Orleans 21th of May 2007

## Work performed together with



G. Vidali O. Biham

L. Ling C. Liu J. Roser L. Shen I. Furman N. Katz A. Lipshtat H. Perets

E. Congiu (Cagliari)

G. Manicò

G. Ragunì

Syracuse University Jerusalem University

Syracuse

Jerusalem

Catania







 $M_{ISM} = 10 \% M_{Galaxy}$  (visible)

Gas & Dust $M_{GAS} = 99 \%$  $M_{ISM}$  $M_{DUST} = 1 \%$  $M_{ISM}$ 

**Condenses in clouds that settles in the galactic plane** 



## Multiple Phases of the ISM



| Component    | $\mathcal{T}_{_g}$ (K) | <b><i>n</i></b> (cm <sup>-3</sup> ) | $M$ (10 <sup>9</sup> $M_{Sun}$ ) |
|--------------|------------------------|-------------------------------------|----------------------------------|
| Molecular    | 10 - 20                | 10 <sup>2</sup> - 10 <sup>6</sup>   | ≈ 2.5                            |
| Cold atomic  | 50 - 100               | 10 - 50                             | <b>&gt; 6.0</b>                  |
| Warm atomic  | 8000                   | 0.2 - 0.5                           |                                  |
| Warm ionized | 8000                   | 0.2 - 0.5                           | ≈ 1.6                            |
| Hot ionized  | 106                    | 0.001                               |                                  |

### **Observed Molecules**



# •Diffuse Clouds (UV from stars) $-H_2$ , CO, CH, .....

### •Dense Clouds (almost NO UV) $-H_2$ , CO, ..., $H_2$ O, ... $H_2$ CO, ... $HC_9$ N

W33A: INVENTORY OF ICES



Schutte et al. 1999

### **Surface Reactions**





H<sub>o</sub>O (Cergy – Catania)



- The most abundant molecule in space
- Once ionized by Cosmic Rays triggers gas phase reactions schemes that form other molecular species
  - Provides an efficient cooling mechanism for clouds, helping star formation, shaping the galaxies

## The Dust Role



- H<sub>2</sub> does not form in the gas phase by the radiative association of two neutral H atoms
- A third body has to absorb the excess energy
- Interstellar grains act as CATALYSTS!

#### Mechanisms of reaction







#### Assumed tunneling assures enough mobility

## $R_{H_2} \sim 1/2 (n_H v_H A S \gamma) n_g$

Hollenbach et al. ApJ 163, 165 (1971)

## but Smoluchowski (1979).....



## **Experimental Conditions**



Low kinetic energy of H atoms ~150-300 K

Low flux of H atoms < 10<sup>12</sup> atoms cm<sup>-2</sup> s<sup>-1</sup>

Low sample temperature 5 K - 40 K

Low background pressure 10<sup>-10</sup> torr

Two atomic beams

## **Catalytic Efficiency**



## Quantitatively



At grain temperatures observations require



- Amorphous Carbon
- Polycrystalline Olivine
- Amorphous Olivine

OK ! NO !

YES

## Polycrystalline Olivine



#### Pirronello et al. (1997a,b)

L-H

## **Hot Atom**



Low coverage

• High coverage

At low H atom coverage



## $R_{H_2} \sim 1/2 (n_H v_H A S t_H)^2 n_g \alpha$

 $t_{H} = v^{-1} \exp(E_{des}/kT)$  H residence time  $\alpha = v \exp(-E_{diff}/kT)$  mobility provided by <u>thermal hopping</u> or <u>thermally assisted tunneling</u>

 $\mathbf{D}$ 

## A simple model (Biham et al., 1998)



<u>on a single grain</u>

 $dN_{H}/dt = n_{H}v_{H}AS - pN_{H} - \alpha N_{H2}$  $r_{H2} = \frac{1}{2} \alpha N_{H2}$ 

 $\frac{i_{\rm H}}{M_{\rm H}} \frac{1}{2} \frac{1}{2}$ 

$$r_{H2} = \frac{1}{2} \alpha N_{H}^{2} =$$

 $p^2 + 2\alpha \Phi AS - p(p^2 + 4\alpha \Phi AS)^{\frac{1}{2}}$ 

## A simple model 2 (Biham et al., 1998)



two limiting cases

#### a) $p^2 << 2\alpha n_H v_H AS \rightarrow r_{H2} = \frac{1}{2} n_H v_H AS$ (Hollenbach et al. 1971)

### b) $p^2 >> 2\alpha n_H v_H AS \rightarrow r_{H2} = \frac{1}{2} (n_H v_H AS t_H)^2 \alpha$ (Pirronello et al., 1997b)



## Amorphous Carbon

Pirronello et al. A&A 344, 681 (1999)



Katz et al. (1999) Cazaux & Tielens (2004) Perets et al. (2005)

a -  $(Fe_{x=0.5}, Mg_{x=0.5})_2SiO_4$ 



#### TPD Experiment on Low Density Ice (LDI)



#### Right peak First order

#### Left peak Second order

(Perets et al. 2005)







Formation energy

•To the grain

To formed molecule: excitation, kinetic

Astrophysical relevance

#### Schematics of time-of-flight measurements



## Tof Spectra



Spectra obtained at high coverages

## Summary on H<sub>2</sub> Formation



On realistic surfaces:

- <u>At high coverage</u> H<sub>2</sub> molecules may be formed by the Hot Atom
  <u>Eley Redial mechanism</u> before H atoms accomodate on the grain
- Some H<sub>2</sub> molecules are immediately released in the gas phase, most remain on the grain
- Depending on the surface a Temperature Window exists in which H ad-atoms are mobile (thermal hopping or thermally assisted tunnelling), may encounter and form H<sub>2</sub> by Langmuir -Hinshelwood mechanism (even <u>at very low coverage</u>)
- In the ISM grains are inside such a Temperature Window
- a-Carbon & a-Silicates efficiencies are high enough to explain observed abundances of molecular hydrogen in space !