H atom cluster formation and recombination on the graphite (0001) surface

Liv Hornekær University of Aarhus, Denmark

Eagle-Nebula 10-1000 K, 100-10.000 atoms/cm³

Star-Birth Clouds · M16

PRC95-44b · ST Scl OPO · November 2, 1995 J. Hester and P. Scowen (AZ State Univ.), NASA

HST · WFPC2

Cloud composition

Atoms: H, He, O, C, N, Ne, Si, Mg, S, Fe ...

~130 Molecules: H₂, CO, H₂O, CO₂, O₂, NH₃, CH₃OH ... Sugars: glycolaldehyde (CH₂OHCHO)

Dust grains

Energy branching in H₂ formation ?

=>

 $E_{released} \sim 4.5 \text{ eV}$

Into:

Kinetic energy?

Molecular excitation?

Grain heating?

LSN

Energy release in H_2 formation and the thermal evolution of interstellar clouds

Flower & des Forêts, MNRAS 247, 500 (1990)

Dust grains

Carbonaceous grains: Graphite, Amorphous Carbon, HAC, PAH, Polymeric Carbon, Diamond Silicates:

Olivines $(Mg_2SiO_4,$ Ices: Fe_2SiO_4) $H_2O, CO, CO_2, CH_3OH, CH_4, H_2CO ...$

Binding sites on graphitic surfaces

Physisorption: Creighan et al, J. Chem. Phys. 124, 114701 (2006) Chemisorption - basal plane: Jeloica & Sidis, Chem. Phys. Lett. 300, 157 (1999) Chemisorption at defects: Sha et al, J. Am. Chem. Soc. 126, 13095 (2004) Güttler et al, Surface Science 570, 218 (2004)

H chemisorbed on HOPG

Jeloica & Sidis, Chem. Phys. Lett. 300, 157 (1999)

Eva Rauls

Brett Jackson et al.

H₂ formation on graphite

$$\frac{\mathrm{d}\Theta}{\mathrm{d}t} = -k_0 \, \mathrm{e}^{-\mathrm{E}_{\mathrm{B}}/\mathrm{k}_{\mathrm{B}}\mathrm{T}} \, \Theta^{\mathrm{n}}$$

n=1 => First order desorption

490 K => 1.4 eV

580 K => 1.6 eV

Zecho et al, J. Chem. Phys. 117, 8486 (2002)

STM on graphite

1.42 4

‡ 2.46 Å

Hydrogen on graphite – Monomers

155 x 171 Å² , 180 K $V_t \sim -710 \text{mV}$, $I_t \sim -0.16 \text{nA}$

Monomer desorption

Flux: 10¹² cm⁻²s⁻¹ Θ~0.03% STM at ~180 K

1030 x 1140 Å²

1030 x 1140 Å²

Experiment: Upper limit: $\tau = 6$ *min.*

Theory: $E_b = 0.9 \ eV$, $v = 10^{13} \ s^{-1} => \tau = 130 \ s$

Monomer desorption

Flux: 10¹² cm⁻²s⁻¹ Θ~0.03% STM at ~180 K

Flux: 10¹⁴ cm⁻²s⁻¹ Θ~0.2% STM at ~170 K

1030 x 1140 Å² 1030 x 1140 Å²

RT

20%

H-Dimers on graphite

 $V_t = 884 \text{ mV}, I_t = 0.16 \text{ nA}$

 $V_t = 884 \text{ mV}, I_t = 0.16 \text{ nA}$

In agreement with: Y. Ferro et al., Chem. Phys. Lett. **368**, 609 (2003). Partial agreement with: Y. Miura et al. J. Appl. Phys. **93**, 3395 (2003).

Diffusion

Barrier to diffusion for an isolated H atom: 1.15 eV Barrier to desorption for an isolated H atom: 0.9 eV

Dimer formation

Hornekær et al. Phys. Rev. Lett. 97, 186102 (2006)

H-Dimers on graphite

A: Ortho-dimer

 $V_t = 884 \text{ mV}, I_t = 0.16 \text{ nA}$

Dimers after Anneal

103 x 114 Å²

80 x 72 Å²

 $V_t = 884 \text{ mV}, I_t = 0.36 \text{ nA}$

 $V_t = 884 \text{ mV}, I_t = 0.19 \text{ nA}$

Recombination pathways

Hornekær et al. Phys. Rev. Lett. 96, 156104 (2006)

Explaining the TPD?

QMS signal amu 4

 $\frac{d\Theta}{dt} = -k_0 e^{-E_B/k_B T} \Theta^n$ n=1 => First order desorption

Barrier to diffusion: 1.3 eV Barrier to desorption: 0.9 eV

490 K => 1.4 eV

° 580 K => 1.6 eV

H on HOPG

Low Coverage

Medium Coverage

171 x 155 Å²

103 x 114 Å² V_t~800mV, I_t~0.15-0.2nA

High Coverage

80 x 72 Å²

Preferential sticking and clustering

Eley Rideal - Abstraction

Jeloaica & Sidis (2001) Sha et al (2002) Zecho et al (2002)

Diffusion

Barrier to diffusion for an isolated H atom: 1.15 eV

Random adsorption

H on HOPG

Low Coverage

Medium Coverage

171 x 155 Å²

103 x 114 Å² V_t~800mV, I_t~0.15-0.2nA

High Coverage

80 x 72 Å²

Comparison to H-Si (100)

H-Si (100):

Ist order desorption Non-langmuirian adsorption Complete pairing observed in STM down to Θ~20%

Suggested mechanism:

Hot atom precursor mediated adsorption Theory predicts precursor states with $E_b \sim 1-2 \ eV$

Widdra et al., PRL 74, 2074 (1995) Tok et al, JCP 118, 3294 (2003)

Comparison to H-Si (100)

H-HOPG (0001)

Comparison to H-Si (100)

High coverage

Allouche et al., J. Chem. Phys. 123, 124701 (2005) *Hornekær et al.* Phys. Rev. Lett. **97**, 186102 (2006)

High Coverage

 $V_t = -1.05 V, I_t = -0.55 nA$

80 x 72 Å²

525K anneal

Stars / trimers

Negative voltages:

I=-0.16nA, V=-874mV 0512020424

I=-0.15nA, V=-309mV 0512020422

I=-0.16nA, V=-109mV 0512020408

I=-0.16nA, V=-46mV 05120204210

I=-0.15nA, V=-23mV 0512020437

Positive voltages:

I=0.15nA, V=874mV 0512020435

I=0.15nA, V=367mV 0512020429

I=0.15nA, V=154mV 0512020431

I=0.15nA, V=46mV 0512020434

I=0.15nA, V=23mV 0512020438

Trimers

0421-8-27I_t = -0.220nA Vt = -625mV

Trimers - superstructure

2.1 Å

(x,y) = (184,198)

3.8 Å

Squareroot(3) reconstruction

Trimers - superstructure

Trimers - superstructure

Tip induced desorption

42 Å

Manipulation

$52 \times 57 \text{ Å}^2$

 $V_t = -743 \text{ mV}, I_t = -0.62 \text{ nA}$

Stars – superimposed graphite network

Eagle-Nebula 10-1000 K, 100-10.000 atoms/cm³

Star-Birth Clouds · M16

PRC95-44b · ST Scl OPO · November 2, 1995 J. Hester and P. Scowen (AZ State Univ.), NASA

HST · WFPC2

Measuring the kinetic energy of formed molecules

Laser Induced Thermal Desorption (LITD)

> Alexandrite Laser

4 mJ 100 ns pulse

Time of Flight Measurement

Kinetic energy of D₂ formed on graphite

S. Baouche et al, J. Chem. Phys. 2006

Measuring internal state distributions

Talk by Saoud Baouche

Real carbonaceous surfaces

Onions

Th. Henning and F. Salama, Science 282, 2204 (1998)

Porous carbonaceous surfaces

Schnaiter et al. Ap. J. 519, 687 (1999)

H₂ formation on ASW grown at 10 K: Physical (Cartoon) picture

ASW figure from Kimmel et al, JCP 114 p.5295 (2001)

Due to morphology:

Kinetic energy of HD formed on porous water ice (ASW)

L. Hornekær et al., Science, **302**, 1943 (2003)

Porous carbonaceous surfaces

Schnaiter et al. Ap. J. 519, 687 (1999)

Surface astrochemistry: Morphology is a key issue

H₂ formation on water ice

H₂ formation on graphite

H on HOPG

Low Coverage

Medium Coverage

171 x 155 Å²

103 x 114 Å² V_t~800mV, I_t~0.15-0.2nA

High Coverage

80 x 72 Å²

People involved

STM group: Wei Xu Roberto Ortero Flemming Besenbacher *iNANO and* Dept. Phys. and Astron. University of Aarhus Surface Theory: Eva Rauls Bjørk Hammer *iNANO and* Dept. Phys. and Astron. University of Aarhus

Zeljko Sljivancanin EPFL Laser desorption: Saoud Baouche Arnd Baurichter Victor Petrunin Alan Luntz Dept. Phys. SDU

Thomas Zecho Univ. Bayreuth and MPG Plasma