

Cédric Crespos – Institut des Sciences Moléculaires (ISM) Université Bordeaux 1

Dynamics of H₂ dissociative adsorption on metallic surfaces

GDR ARCHES - Nouan le Fuzelier 20-23 mai 2007

The gas/surface group in Bordeaux

Nicolas Susperregui

Pascal Larregaray

Jean-Claude Rayez

Genevieve Volphilac

Ludovic Martin

Laurent Bonn

- Introduction Why studying gas-surface reactions ?
- Models, approximations and simulation tools
- Example : $H_2 + Pd(111)$ and the dynamic trapping mechanism
- Conclusion and prospects

Introduction

Heterogeneous catalysis (industrial processes, reduction pollutants, storage of chemical compounds ...)

• Chemistry in the atmospheric and interstellar media

- Heating of space shuttles during atmospheric re-entries : « Catalycity »
- Surface functionalization, preparation of self-assembled monolayers (SAM)

... and many other fields of application

Introduction

The reactivity is influenced by many parameters :

- electronic and geometric structure of the surface
- surface defects (adatoms, steps, reconstructions)
- nature of the surface (metal, semi-conductor, alloy)
- pre-adsorbed molecules or atoms (promotors or poisons)
- ro-vibrational state of the impinging molecules
- incidence angle (molecular beam)
- diffusion of the products on the surface etc ...

The problem is quite complex !!!

Introduction

• Experiments :

- Molecular beams + vacuum technology (UHV)

- Probing the surface at the molecular level (HREELS, AES, LEED, STM, AFM)

• Theory :

- Electronic structure calculations (DFT for periodic systems)
- Determination of the PES by interpolation techniques
- Simulation of the dynamics : classical or quantum approaches

Models and approximations

Some types of mechanisms

6D model (rigid surface)

Multi-dimensional dynamics

• Approximations :

- Born-Oppenheimer
- Rigid surface (infinite, periodic, no defects, fixed atoms)
- No energy loss by electronic excitation
- Reduced models / classical approximation

More elaborated treatments :

- Surface atoms : thermic bath, generalised Langevin oscillators
- Defects : surface with steps, clusters
- Electronic effects : electron-hole pairs, friction terms
- High-dimensional Quantum Dynamics : MCTDH ?

Example : $H_2 + Pd(111)$

A. Salin (ISM Bordeaux, France)

H.F. Busnengo (Instituto de Fisica Rosario, Argentina)

W. Dong (ENS Lyon, France)

Activated system = potential barriers

Non-activated system = no barriers

PES = cubic splines interpolation + corrugation reducing procedure (H.F. Busnengo, A. Salin, J. Chem. Phys. 112, 7641(2000))

 \rightarrow several non-activated reaction paths

Example : dissociative adsorption of H₂ on Pd(111)

• Results of the simulation (v = 0)

• Analysis : P(Z), probability to reach the distance Z

- Critical distance $Z=Z_0=1.5$ Å

- Dynamics takes place in the region $Z < Z_0$

- Study of $P(Z_0)=P_0$

Example : dissociative adsorption of H₂ on Pd(111)

• Analysis : reduction of the dimensionality

- Reduction $6D \rightarrow 3D (r, \theta, Z)$
- Reduction 3D (r, θ , Z) \rightarrow 2D (θ , Z) + adiabaticity of the vibrational motion
- Role of the various degrees of freedom in the region $Z > Z_0$

• Analysis : reduction of the dimensionality

Attractive part of the potential

Perpendicular orientationmost favorable $\theta = 0$ or 180°

Rotational hindering channel

Parallel orientation most favorable $\theta = 90^{\circ}$

• Analysis : reduction of the dimensionality

- Classical trajectories : P_0 ($Z_0=1.5$ Å) for differents values of initial J

Decomposition of P_0 in two components :

direct mechanism + indirect mechanism (trapping)

Analysis : conclusions

- Key role of the molecular orientation during the approach towards the surface (region $Z > Z_0$) : 2D mechanism

- The dynamics are sensitive to the representation of the potentiel in the asymptotic region

- A detailed study of the dynamics (accurate representation of the 6D PES) is required

- The dynamic trapping is a general mechanism which may be involved in other problems : rotational excitation H_2 (J=1 \rightarrow 3), non-normal energy scaling, angular distribution ...

Conclusion and prospects

• Study of gas-surface reactions at the molecular level (molecular beams + dynamics simulations) \rightarrow development of the theoretical approaches

• Multi-dimensionality of the problems \rightarrow PES determination is one of the key issues

GDR Wei Dong (ENS Lyon) Reactive force fields for benchmark systems like H₂+Pt , H₂+Pd , H₂+Cu

• Work in progress : polyatomic systems, atmospheric re-entries

 $CH_4 + Ni$

 $SH_2 + Au$

Thanks for your attention !!!

Dynamic trapping / interpretation of experimental data

• Surface temperature and rotational excitation H_2 (v =0, J=1 \rightarrow 3)

3D surface oscillator model = energy exchange between molecule and surface phonons

 $\Delta E(J=1 \rightarrow 3) \sim 75 \text{ meV}$

Experiments (J. Chem. Phys. 111 (1999) 9791) **Theory** (Phys. Rev. Lett. 87 (2001) 127601)