Formation of Molecular Hydrogen on Analogues of Interstellar Grains

http://physics.syr.edu/astro

Gianfranco Vidali Syracuse University Syracuse, N.Y. (USA)

National Aeronautics and Space Administration

Outline

1. Use laboratory techniques to:

- 1. Measure the efficiency of H₂ formation on dust grain analogues
- 2. Obtain information on kinetics, energetics of elementary steps of atom/molecule interaction with surfaces
- 3. Determine of the mechanism(s) of reaction
- 4. Characterize surfaces
- 2. Apply the above to model processes in actual ISM conditions

Molecular Hydrogen in the Universe

- Most abundant molecule Carruther (1970)
- Tracer of warm gas
 - collisional excitation
 - FUV excitation

Hollenbach and Tielens (1999)

• Role in star formation

• Promotes interstellar chemistry

 $H_{2} + cr \rightarrow H_{2}^{+} + e$ $H_{2}^{+} + H_{2} \rightarrow H_{3}^{+} + H$

oxygen chemistry: $H_3^+ + O \rightarrow OH^+ + H_2$

hydrocarbon chemistry: $H_2 + C^+ \rightarrow CH^+ + H$

Molecular hydrogen contributes to the cooling of the cloud by radiating in the IR, thus allowing further gravitational contraction

Other routes:

 $H + e \longrightarrow H^- + h v$ $H^- + H \longrightarrow H_2 + e$ but they require an ionized medium

 $H + H^{+} \longrightarrow H_{2}^{+} + h_{V}$ $H_{2}^{+} + H \longrightarrow H_{2} + H^{+}$

- H+H→H₂ on dust grains (polycrystalline ice) Theory of Salpeter & Hollenbach ~1970
- Model: $R_{H_2} = 1/2 (n_H v_H \sigma \xi) n_g$ (cm⁻³ s⁻¹) fast mobility because of tunneling
- H+H→H₂ on amorphous ice -Smoluchowski, 1979 → rates too low because H atoms are trapped at defects
- Early experiments: Scoles' group

Effect of flux on the lab measurements High flux (formation of molecules is ikely without thermal activation) Hot-atom mechanism : atoms lands on

Hot-atom mechanism : atoms lands on surface and travel tens of Angstrom before coming to rest (as per MD simulations of H on ice – Buch & Zhang Ap.J. '91; Takahashi & Uehara, Ap.J. 2001; Al-Halabi et al, MNRAS 2007)

The hot atom mechanism can be responsible for molecule formation if the flux is high; we use a flux low enough so the hot atom mechanism is not the main mechanism of molecule formation. This condition is closer to actual ISM conditions.

• Questions:

- * How does H₂ form on grains?
- * Under what conditions (temperature, grain morphology, etc.)?
- * With what rates?
- What happens to the energy released in the reaction?
- We initiated a research program at Syracuse University in 1996 to answer these questions

- Efficiency & Mechanism of formation of H₂ in diffuse clouds grains are bare (T~15-25 K) (Syracuse University, 1997 –now: Vidali, Pirronello et al.)
- Efficiency & Mechanism of formation of H₂ in dense clouds grains are coated with ices (mostly H₂0) (T ~ 10-20 K) (Syracuse University 2001-2003, Denmark 2003: Hornekaer; Cergy-Pontoise: Lemaire et al, 2006)
- Mechanism of formation of H₂ in PDRs- (T >50K) (Zecho, 2002; Hornekaer, 2006; Mennella, 2008)
- Partition of energy released in the H₂ bond formation (Syracuse University 2003, Hornekaer, 2003; UCL: Price 2003, Lemaire 2008)
- Other studies: H₂ interaction with ices (Scoles, Lemaire); theoretical studies (Salpeter, Brechignac, Sidis, Clary, Martinazzo, Jackson, etc.); applications to ISM: Herbst, Williams, Tielens, Biham, etc.)

Results of Gio et al. obtained using scattering of a beam of thermal H atoms from a single crystal graphite surface

van der Waals (two atoms)

Dipolar field ~ p_A/r^3 Induced dipole on atom B ~ $\alpha_B p_A/r^3$

Dipolar field on atom A $\sim \alpha_B p_B p_A/r^6$

Long-range attractive interaction

$$V(z) \sim - C_3 / z^3$$

$$C_3 = \int h/4\pi \left[\epsilon(i\omega) - 1\right] / \left[\epsilon(i\omega) + 1\right] \alpha(i\omega) d\omega$$

$$\langle p^2 \rangle = h \alpha(i\omega) d\omega$$

$$\varepsilon(i\omega) = \varepsilon_1(\omega) + i \varepsilon_2(\omega)$$

 $\left[\varepsilon(i\omega) - 1\right] / \left[\varepsilon(i\omega) + 1\right] = g_0 \left(1 + \omega^2 / \omega_s^2\right)$

$$\alpha(i\omega) = \alpha_0 / \left[1 + \frac{\omega^2}{\omega_a^2}\right] C_3 / \alpha_0 \sim 0.5 \text{ eV}$$

 $C_3 = g_0 \alpha_0 h \omega / 16$

$$2/\omega = 1/\omega_a + 1/\omega_s$$

$$h\omega \sim 10 \text{ eV}$$
 $g_0 \sim 0.5 - 0.9$

 $C_3 / \alpha_0 \sim 0.5 \text{ eV}$

if $\alpha_0 \sim 1 \text{ A}^3$; $z \sim 2 \text{ A}$ strength ~ 50 meV

> Vidali & Cole, Surf. Sci. 110, 10 (1981) Vidali et al., Surf. Sci. Rep. 12, 133 (1991)

Formation of H₂ on grains in the ISM

- Arrival rate: $n_H v_H \sigma$
- Residence time: $t_H = v^{-1} \exp(E^{des}_H / k_B T)$
- For: n_H~10² H/cm³, v_H~10⁵ cm/sec, v~10¹² 10¹³ /sec, A~10⁻⁹ cm², E_H^{des} ~500 K
- *t_H*~10⁸ sec at 10 K but 300 sec at 15 K
- $t_{photon} = (\sigma Q \Phi)^{-1}$ 2.6 10⁻³ (erg cm⁻² sec⁻¹)
- Large grains: t~10s sec, T~15-20 K; small grains t~100s
 T~10-20 K
- Need $\zeta dN/dt > 1/t_{photon}$ (2 atoms on grain)

These conditions are too restrictive; therefore there must be a range of energies

Cuppen et al. MNRAS 367, 1757 (20006)

Eley-Rideal/hot-atom reactions

R~e^{-σ φ t}

- Incomplete accommodation
 - Poor inelastic coupling
- Sizable condensation energy
- Sizable coverage
- Signature
 - Small cross-section
 - Energy partition

H - D/graphite(0001) T = 150 K $\phi_{\rm H} = 4.8 \times 10^{13} \, {\rm cm}^2 {\rm s}^1$ 2.5 3.5 ML D preexposure A amu 4 [10⁻¹¹ 2.0 QMS signal amu 3 [10^ª A] 0 100 200 300 HD (g) 1,5 D preexposure [ML] 2.9 2.0 1.0 1.4 0,9 0.6 0.23 0.5 0.12 0.06 0.03 0.0 n 50 100 150 200 250 300 time [s] Zecho et al. Chem. Phys. Lett. 366, 188 (2002)

Apparatus at S.U. to study molecule formation on dust grain analogues

Apparatus: Details

ypes of Dust

Silicates (Mg_x, Fe_{1-x})₂ SiO₄

Carbonaceous Material

Also: SiC, nanodiamonds, aluminosilicates

Charnley and Ehrenfreund, Ann.Rev.Astron.Astrophys.

Detection of HD formation via Ealy-Rideal, hot atom mechanisms

Signal at mass 3 (HD) during irradiation

In the range of sample temperature explored, this gives little contribution to the overall HD yield -see below

Detection of HD formation via the Langmuir-Hinschelwood mechanism

The purpose of the second part of the experiment is to:

- 1. Set atoms in motion that are still on the sample
- 2. Desorb molecules already formed on the surface

There is hardly desorption of molecules at low temp. (A similar result for H atoms)

A similar result for ice, Vidali et al., JGR 109 E07S104 (2004); Al-Halabi et al., MNRAS (2007)

$$\frac{dn_{\rm H}}{dt} = f_{\rm H} - W_{\rm H}n_{\rm H} - 2a_{\rm H}n_{\rm H}^2 - (a_{\rm H} + a_{\rm D})n_{\rm H}n_{\rm D}$$
$$\frac{dn_{\rm D}}{dt} = f_{\rm D} - W_{\rm D}n_{\rm D} - 2a_{\rm D}n_{\rm D}^2 - (a_{\rm H} + a_{\rm D})n_{\rm H}n_{\rm D}.$$

$$\frac{dn_{\mathrm{H}_2}}{dt} = a_{\mathrm{H}}n_{\mathrm{H}}^2 - W_{\mathrm{H}_2}n_{\mathrm{H}_2}$$
$$\frac{dn_{\mathrm{D}_2}}{dt} = a_{\mathrm{D}}n_{\mathrm{D}}^2 - W_{\mathrm{D}_2}n_{\mathrm{D}_2}$$
$$\frac{dn_{\mathrm{HD}}}{dt} = (a_{\mathrm{H}} + a_{\mathrm{D}})n_{\mathrm{H}}n_{\mathrm{D}} - W_{\mathrm{HD}}n_{\mathrm{HD}}$$

$$W_{\rm X} = \nu \exp(-E_{\rm X}^{\rm des}/k_{\rm B}T)$$
$$a_{\rm X} = \nu \exp(-E_{\rm X}^{\rm diff}/k_{\rm B}T)$$

Vidali et al. - J.Phys. Chem. A 111, 12611 (2007)

		· · ·
oporau		$m \cap V$
	-> 111	

material	E _{diff} (H)	E _{des} (H)	E _{des} (HD)	E _{des} (HD)	E _{des} (HD)	sites
a-silicate	35	44	35	53	75	7 10 ¹⁴
p-cryst.	25	32	27			

The number of molecules coming off during irradiation is proportional to the area under the trace

Fig. 3. TPD of HD desorption after H and D atom irradiation at different sample temperatures. Irradiation is for 4 minutes with hydrogen and deuterium atoms on an amorphous silicate sample $(Fe_xMg_{(1-x)})_2$ SiO₄, x=0.5. A temperature ramp following irradiation at 13 K is shown in the top right corner.

Fig. 4. HD formation efficiency after irradiation of amorphous silicate and polycrystalline samples with hydrogen and deuterium atoms. Data form a representative set of samples of different composition are shown.

Ta	ble	1
----	-----	---

Desorption energy of HD obtained from TPD runs at different irradiation temperatures from an amorphous silicate of composition $(Fe_xMg_{(1-x)})_2 SiO_4, x=0.5.$

Irradiation Temperature	E(meV)	Relative Coverage
13 K	59	1
16 K	61	0.9
18 K	64	0.8
21 K	69	0.7
25 K	80	0.4

Table 2

Desorption energy of HD from a morphous silicates of different composition $({\rm Fe}_x{\rm Mg}_{(1-x)})_2$ SiO₄. Energies in meV.

Sample	E at T ${\sim}13{\rm K}$	E at T ${\sim}25{\text{-}}26~{\rm K}$
x = 0.25	65	81
x = 0.5	59	80
x = 0.75	58	76

1

Vidali et al. Adv.Space Res. 43, 1291 (2009)

Vidali et al. Adv.Space Res. 43, 1291 (2009)

o State

- Katz et al., Astrophys.J. **522** 305 (1999): rate equations, physisorption, Langmuir-Hinshelwood
- Cazaux & Tielens, Astrophys.J. **575** 29 (2002); ibid. **604** 222: rate equations, plus chemisorption, isotopes
- Biham & Lipshtat Phys.Rev. E 055103: master eq. approach stochastic effects for small grains
- Cuppen and Herbst, Mon.Not.R. Astron. Soc. **361** 565 (2005): Monte Carlo, influence of surface roughness
- See also: Biham, Lipshtat & Perets, IAU No231 Proceedings

From the laboratory to space

Results of rate equations

Summary of results from experiments

- System: formation of H₂ on dust grain analogues under simulated ISM conditions
- Information obtained:
 - Mechanism: Langmuir-Hinshelwood, hot atom (depending on circumstances)
 - Atom/molecule surface interactions: physisorption
 - Formation Efficiency: higher for amorphous surfaces
 - Energetics: diffusion and desorption energies
 - Kinetic Energy of just-formed molecules: nearly thermal from a-ice
- Collaborators:
 - Profs. O.Biham (Hebrew Univ.), V.Pirronello (Univ. of Catania)
 - L. Li, H.Zhao, E.Congiu (now at U. Cergy-Pontoise), J.Roser (now at NASA-Ames), H.Perets (now at the Weizmann Inst.)
- Sponsors: NASA-APRA, NSF-Planetary Astronomy, BSF, Israel Science Foundation, Adler Foundation, Italian Ministry of Research