R&D around the ITER-NBI heating system

Dr A. Simonin CEA Cadarache Institut de Recherche sur la Fusion Magnétique Service Chauffage et Confinement du Plasma

Summary of lecture

- 2) The ITER mains parameters and the heating systems
- 4) Principle of the ITER-NBI heating system; issues, planning of the developments
- 6) R&D around the ITER-NBI

8) Conclusion

ITER Design Goals

Investigate the basic Physics of Fusion reactors

- Iter size in the range of the future reactor
- ITER is designed to produce a plasma dominated by α -particle heating (Q>10)
- Long-pulse operation

Technology

• test components required for a fusion power plant

divertor, first wall, magnets, etc..

Plasma Fusion Performance

Fusion power amplification:

$$Q = \frac{Fusion Power}{Input Power} \sim n_i T_i \tau_E$$

Temperature (T_i): $1-2 \times 10^8 \,^{\circ}\text{C} \,(10-20 \,\text{keV})$

Rq: ~10 \times temperature of sun's core

Density (n_i): 1×10^{20} m⁻³ Rq: ~10⁻⁶ of atmospheric particle density; limitation by the magnetic field intensity (B_T~5T)

Energy confinement time (\tau_E): few seconds: limited by plasma instabilities

Fusion Triple Product

- Existing experiments have achieved nTτ values
 - ~ 1×10²¹ m⁻³skeV
 - ~ Q_{DT} = 1
- JET (98) and TFTR have produced DT fusion powers of >10MW for ~1s
- ITER is designed to a scale which should yield Q_{DT} > 10 at a fusion power of 400 500MW for ~400s

Present Fusion machines (Tokamak)

And ITER

Plasma Heating & Additional heating

Ohmic heating of the plasma limited : $P_{\Omega} \propto$

c	$(B_{\Theta} / R)^2$		
	$T_{e}^{3/2}$		

Heating System	Stage 1 MW	Possible Upgrade	Remarks
NBI (1MeV D°	33	16.5	Vertically steerable (z at Rtan -0.42m to +0.16m)
ECH&CD (170GHz)	20	20	Equatorial and upper port launchers steerable
ICH&CD (40-55MHz)	20		2Ωr (50% power to ions Ω _{He3} (70% power to ions, FWCD)
LHH&CD (5GHz)		20	1.8 <n<sub>par<2.2</n<sub>
Total	73	130 (110 simultan)	
ECRH Startup	2		
Diagnostic Beam (100keV, H)	>2		

Euratom

Heating in ITER reference scenario

Pros and Cons for the Heating systems

NBI

Pros: Simple physics (energy transfer in the plasma); insensitivity to B, plasma and instabilities Substantial Plasma Fuelling

No plasma facing components

Cons: System faced to several issues for ITER (Negative Ions, high voltage (1MeV)) Real estate and cost

ECR

Pros: Insensitivity to plasma position Good physics predictability Excellent localization for energy coupling → a surgery tool! Achievement of a ITER relevant Gyrotron: 170Ghz, 1MW, 800s Cons: Mirror in plasma/neutron sight, moving parts in the vacuum vessel(in ITER) Dependence on B (but ITER single B?)

ICR

Pros: Ion heating and CD, Low Cost

Cons: Coupling wave-plasma: Dependence on plasma edge(& instabilities) Plasma facing components (antenna localised a few mm from the plasma edge)

Plasma facing components (antenna localised a few mm from the plasma edge) => hot spots An ITER-like antenna under test at JET: not very promising results !!

2) Description of the NBI heating system

Principle of a Neutral Beam Injector (NBI)

Present NBI systems:

- -) are based on hydrogen positive Ions (D+, H+), in the 100keV energy range
- -) main heating system for present advanced Tokamaks (JET, JT60 SA) : ~20– 30MW of D° or H°
- -) Beamlines are composed of several sources with only 1.5MW of D°/source

For ITER:

energy range : 1MeV and 17MW of D°/source => <u>factor 10</u> in neutral power and energy

The ITER NBI system

Requires important R&D:

- -) Based on negative Ions (D-)
- -) High energy beams (1MeV)
- -) High power beams : 40MW at the accelerator exit
- -) Long shot operations (100-1000s)

Neutralisation rate on Gas target (D_2)

The ITER beam line: 1MeV, 17MW D°

The ITER negative Ion source

Principle of the negative ion source

Main source specifications:

Confinement Bource agnets Source case divers blates

Homogenous production of D- over the whole surface: $J_{D_-} \sim 250 \text{ A/m}^2 \pm 10\%$

Co-extracted electrons with the D- : < 1 e- / D-

Low source pressure : $P_s < 0.3 Pa$ (~30% of stripping losses in the accelerator)

Long shot (**100** à **3600s**), low maintenance and high reliability (reactor environment) Expected Rf power: **800kW** at 1Mhz (~100kW / Driver)

Conclusion: Modeling, R&D and source optimization required

Euratom

The 1MeV 40A D- Accelerator Multi-Aperture Multi Grid (Mamug) Concept

Euratom (

Neutralisor and E-RID

D- Neutralization by a Stripping process on gas target:

 $D^- + D_2 \rightarrow D^\circ + e^- + D_2$

About 58% of neutralization rate

=> 17MW of D° coupled to the ITER Plasma

=> 20% of D⁺ and D⁻ at 1MeV to deflect and collect out from the D° beam

Neutralizer issues:

- -) Minimization of the gas injection: 4 beam columns
- -) Diffusion of particles from the plasma neutralizer:

E-RID:

-) High heat flux (1MeV D+ and D- beams): about 2MW/pannel

Conclusion:

-) Modeling of the plasma neutralizer required

Study of other neutralization processes **Euratom**

1) Reduction of the gas injection by a factor 3 ($\sim 10\%$ of stripping)

=> Modeling of the Ion source for higher efficiency (with additional magnetic confinement)

=> Modeling of the gas neutralizer for optimization

=> Study (modeling) of other neutralization concept (Lithium Jet, photo-neutralizer

- 2) Study of the Negative ion formation with Ceasium seeding to reduce the Cs consumption _
 - -) To get a better understanding of the process (plasma-wall interaction, Cs chemistry)
 - -) Conditioning protocol for the large size Ion source ($\sim 1.2m^2$)

Study of other NI formation concepts (without Ceasium)

The R&D in France around the ITER-NBI system

Modeling and R&D around the ITER negative Ion

source

The ITER-Negative Ion Source research project **ITER-NIS**

-) Grant of 800k€ from the French National Research Agency (ANR) for the next three years (2009-2011) -) Seven Laboration involved; Strong synergies (collaboration) between physic models and experiments

Modeling and R&D for the 1MeV 40A D- beam neutralization

Modeling of the 1MeV D- beam neutralization by gas target LPGP

R&D for a photo-neutralization system LAC and Artemis

Conclusion

- The ITER-NBI is faced to important issues
 - The NI Ion source is a real challenge with stringent constraints
 - specifications far from the present knowledge
 - Too much gas released along the injector (stray particles)
 - Optimization of source and neutraliser
 - Study of other neutralizer concepts
 - Very high thermal loads on the accelerators components
- Special effort on modeling and R&D necessary
 - Modeling: First results from Heavy plasma models (3D) expected 2011
 - R&D:
 - NI formation (w/wo Cs) : Special effort is required: European coordination of the research (basic physics, modeling, experience) ??
 - Photo-neutralization: interesting but very speculative (first results 2011)

Organization of the European Research around the ITER-NBI

• <u>Italy (RFX Padova) :</u>

- Construction of a testbed scale 1 for one ITER beam line (1MeV, 17MW of D°) (Scheduled on 2015)
- Construction of a testbed scale 1 for the Negative Ion source (scheduled on 2012)
- <u>Germany (IPP Garching)</u>
 - Development of a RF Ion source 1/2 scale (RADI under progress) with 50keV 20A Daccelerator (Elise project); (scheduled on 2010)
- England (UKAEA Oxford)
 - Thermomecanical studies of the high heat flux components (neutralizer, E-RID, Target)
- France (IRFM, CNRS)
 - Singap testbed (IRFM) : Study of the high voltage conditionning (1MV) and HV breakdowns
 - Mantis testbed (IRFM) : benchmark of the physics models under development in Universities (ITER-NIS)
 - Modeling and R&D in Universities: ITER-NIS, Photo-neutralizer project

