Methane dissociation on Ni(111) and Pt(111): The effects of lattice motion and relaxation on reactivity

Sven Nave

Bret Jackson

May 6, 2009

University of Massachusetts, Amherst

Motivations

Theory

Electronic structure calculations and potential energy surface

Temperature dependence

Dynamics

Comparison with the experiments

Conclusion

Motivations

Motivations

Motivations

Theory

Electronic structure calculations and potential energy surface

Temperature dependence

Dynamics

Comparison with the experiments

Conclusion

• Study and understand the methane dissociation on metals

Motivations

Motivations

Theory

Electronic structure calculations and potential energy surface

Temperature dependence

Dynamics

Comparison with the experiments

Conclusion

Study and understand the methane dissociation on metals

• Understand the influence of the surface temperature on the reactivity

Motivations

Motivations

Theory

Electronic structure calculations and potential energy surface

Temperature dependence

Dynamics

Comparison with the experiments

Conclusion

Study and understand the methane dissociation on metals

- Understand the influence of the surface temperature on the reactivity
- \Rightarrow We wish to elucidate some unexplained variations in reactivity and temperature dependence from one metal to another

Theory

- Approximations
- Coordinate system

Electronic structure calculations and potential energy surface

Temperature dependence

Dynamics

Comparison with the experiments

Conclusion

Theory

Motivations

Theory

• Approximations

Coordinate system

Electronic structure calculations and potential energy surface

Temperature dependence

Dynamics

Comparison with the experiments

Conclusion

• Born-Oppenheimer approximation

Motivations

Theory

- Approximations
- Coordinate system

Electronic structure calculations and potential energy surface

Temperature dependence

Dynamics

Comparison with the experiments

- Born-Oppenheimer approximation
- Adiabatic approximation

Motivations

Theory

- Approximations
- Coordinate system

Electronic structure calculations and potential energy surface

Temperature dependence

Dynamics

Comparison with the experiments

- Born-Oppenheimer approximation
- Adiabatic approximation
- This splits the problem in 2 parts

Motivations

Theory

- Approximations
- Coordinate system

Electronic structure calculations and potential energy surface

Temperature dependence

Dynamics

Comparison with the experiments

- Born-Oppenheimer approximation
- Adiabatic approximation
- This splits the problem in 2 parts
- \Rightarrow Electronic structure calculations (15 DOFs for methane)

Motivations

Theory

- Approximations
- Coordinate system

Electronic structure calculations and potential energy surface

Temperature dependence

Dynamics

Comparison with the experiments

- Born-Oppenheimer approximation
- Adiabatic approximation
- This splits the problem in 2 parts
- \Rightarrow Electronic structure calculations (15 DOFs for methane)
- \Rightarrow Dynamics

Motivations

Theory

- Approximations
- Coordinate system

Electronic structure calculations and potential energy surface

Temperature dependence

Dynamics

Comparison with the experiments

Conclusion

- Born-Oppenheimer approximation
- Adiabatic approximation
- This splits the problem in 2 parts
- \Rightarrow Electronic structure calculations (15 DOFs for methane)

\Rightarrow Dynamics

DFT results are fit with a LEPS form, which depends on only 3 DOFs: Z, r, and θ , and we set $V = V_0(Z, r, \theta)$

Coordinate system

Theory

Electronic structure calculations and potential energy surface

• Electronic structure calculations

 Potential energy surface

• How to find the MEP?

• Minimum Energy Path (MEP)

• Product states for Ni(111)

• Transition states for Ni(111)

• Product states for Pt(111)

• Transition states for Pt(111)

Temperature dependence

Dynamics

Comparison with the experiments

Conclusion

Electronic structure calculations and potential energy surface

Methane Dissociation

Motivations

Theory

Electronic structure calculations and potential energy surface

• Electronic structure calculations

 Potential energy surface

- How to find the MEP?
- Minimum Energy Path (MEP)
- Product states for Ni(111)
- Transition states for Ni(111)
- Product states for Pt(111)
- Transition states for Pt(111)

Temperature

dependence

Dynamics

Comparison with the experiments

Conclusion

To compute the total electronic energies, we use the Vienna *Ab initio* Simulation Package (VASP)

Methane Dissociation

Motivations

Theory

Electronic structure calculations and potential energy surface

• Electronic structure calculations

• Potential energy surface

• How to find the MEP?

• Minimum Energy Path (MEP)

• Product states for Ni(111)

• Transition states for Ni(111)

• Product states for Pt(111)

• Transition states for Pt(111)

Temperature

dependence

Dynamics

Comparison with the experiments

Conclusion

To compute the total electronic energies, we use the Vienna *Ab initio* Simulation Package (VASP)

Motivations

Theory

Electronic structure calculations and potential energy surface

• Electronic structure calculations

 Potential energy surface

• How to find the MEP?

• Minimum Energy Path (MEP)

 Product states for Ni(111)

• Transition states for Ni(111)

 Product states for Pt(111)

• Transition states for Pt(111)

Temperature dependence

Dynamics

Comparison with the experiments

Conclusion

To compute the total electronic energies, we use the Vienna *Ab initio* Simulation Package (VASP)

• Density Functional Theory (DFT)

• Fully non-local optimized ultrasoft pseudopotential (USPP), or projected augmented wave potential (PAWP)

Motivations

Theory

Electronic structure calculations and potential energy surface

• Electronic structure calculations

• Potential energy surface

• How to find the MEP?

• Minimum Energy Path (MEP)

• Product states for Ni(111)

• Transition states for Ni(111)

• Product states for Pt(111)

• Transition states for Pt(111)

Temperature dependence

Dynamics

Comparison with the experiments

Conclusion

To compute the total electronic energies, we use the Vienna *Ab initio* Simulation Package (VASP)

- Fully non-local optimized ultrasoft pseudopotential (USPP), or projected augmented wave potential (PAWP)
- Non-local exchange-correlation effects: PW91 functional (GGA), or PBE functional (GGA)

Motivations

Theory

Electronic structure calculations and potential energy surface

• Electronic structure calculations

• Potential energy surface

• How to find the MEP?

• Minimum Energy Path (MEP)

• Product states for Ni(111)

• Transition states for Ni(111)

• Product states for Pt(111)

• Transition states for Pt(111)

Temperature dependence

Dynamics

Comparison with the experiments

Conclusion

To compute the total electronic energies, we use the Vienna *Ab initio* Simulation Package (VASP)

- Fully non-local optimized ultrasoft pseudopotential (USPP), or projected augmented wave potential (PAWP)
- Non-local exchange-correlation effects: PW91 functional (GGA), or PBE functional (GGA)
- Asymmetric slab supercell with periodic boundary conditions for the metal surface

Motivations

Theory

Electronic structure calculations and potential energy surface

• Electronic structure calculations

• Potential energy surface

• How to find the MEP?

• Minimum Energy Path (MEP)

 Product states for Ni(111)

• Transition states for Ni(111)

• Product states for Pt(111)

• Transition states for Pt(111)

Temperature dependence

Dynamics

Comparison with the experiments

Conclusion

To compute the total electronic energies, we use the Vienna *Ab initio* Simulation Package (VASP)

- Fully non-local optimized ultrasoft pseudopotential (USPP), or projected augmented wave potential (PAWP)
- Non-local exchange-correlation effects: PW91 functional (GGA), or PBE functional (GGA)
- Asymmetric slab supercell with periodic boundary conditions for the metal surface
- Plane wave basis set

(Ni111PSh1b)

$$\Rightarrow E_p = 0.361 \text{ eV}$$

Methane Dissociation

May 6 2009 - 9 / 41

Motivations

Theory

Electronic structure calculations and potential energy surface

• Electronic structure calculations

 Potential energy surface

- How to find the MEP?
- Minimum Energy Path (MEP)
- Product states for Ni(111)
- Transition states for Ni(111)
- Product states for Pt(111)
- Transition states for Pt(111)

Temperature

dependence

Dynamics

Comparison with the experiments

Conclusion

Motivations

Theory

Electronic structure calculations and potential energy surface

• Electronic structure calculations

 Potential energy surface

• How to find the MEP?

• Minimum Energy Path (MEP)

• Product states for Ni(111)

• Transition states for Ni(111)

• Product states for Pt(111)

• Transition states for Pt(111)

Temperature

dependence

Dynamics

Comparison with the experiments

Conclusion

 The PES is based onto a LEPS form (London-Eyring-Polanyi-Sato)
⇒ Interpolation of DFT results

• CH₃-H interaction: Morse function (3 parameters)

Motivations

Theory

Electronic structure calculations and potential energy surface

• Electronic structure calculations

 Potential energy surface

• How to find the MEP?

• Minimum Energy Path (MEP)

• Product states for Ni(111)

• Transition states for Ni(111)

• Product states for Pt(111)

• Transition states for Pt(111)

Temperature dependence

Dynamics

Comparison with the experiments

Conclusion

- CH₃-H interaction: Morse function (3 parameters)
- H-Metal interaction: Morse function (3 parameters)

Motivations

Theory

Electronic structure calculations and potential energy surface

• Electronic structure calculations

 Potential energy surface

• How to find the MEP?

• Minimum Energy Path (MEP)

 Product states for Ni(111)

• Transition states for Ni(111)

• Product states for Pt(111)

• Transition states for Pt(111)

Temperature dependence

Dynamics

Comparison with the experiments

Conclusion

- CH₃-H interaction: Morse function (3 parameters)
- H-Metal interaction: Morse function (3 parameters)
- CH₃-Metal interaction: Morse function (3 parameters)

Motivations

Theory

Electronic structure calculations and potential energy surface

• Electronic structure calculations

 Potential energy surface

• How to find the MEP?

• Minimum Energy Path (MEP)

 Product states for Ni(111)

• Transition states for Ni(111)

• Product states for Pt(111)

• Transition states for Pt(111)

Temperature dependence

Dynamics

Comparison with the experiments

Conclusion

- CH₃-H interaction: Morse function (3 parameters)
- H-Metal interaction: Morse function (3 parameters)
- CH₃-Metal interaction: Morse function (3 parameters)
- $\bullet\,$ The MEP gives the 3 Sato parameters

Motivations

Theory

Electronic structure calculations and potential energy surface

• Electronic structure calculations

 Potential energy surface

• How to find the MEP?

• Minimum Energy Path (MEP)

 Product states for Ni(111)

• Transition states for Ni(111)

• Product states for Pt(111)

• Transition states for Pt(111)

Temperature dependence

Dynamics

Comparison with the experiments

Conclusion

 The PES is based onto a LEPS form (London-Eyring-Polanyi-Sato)
⇒ Interpolation of DFT results

- CH₃-H interaction: Morse function (3 parameters)
- H-Metal interaction: Morse function (3 parameters)
- CH₃-Metal interaction: Morse function (3 parameters)
- $\bullet\,$ The MEP gives the 3 Sato parameters

 \Rightarrow a total of 12 parameters for the 3D (Z, r, θ) LEPS

Methane Dissociation

May 6 2009 - 10 / 41

How to find the MEP?

Motivations

Theory

Electronic structure calculations and potential energy surface • Electronic structure calculations • Potential energy surface • How to find the MEP? • Minimum Energy Path

(MEP)

• Product states for Ni(111)

• Transition states for Ni(111)

• Product states for Pt(111)

• Transition states for Pt(111)

Temperature dependence

Dynamics

Comparison with the experiments

Conclusion

Climbing Image - NEB method (Henkelman et al.)

Start from a linear path of initial «images»

How to find the MEP?

Motivations

Theory

Electronic structure calculations and potential energy surface • Electronic structure calculations • Potential energy surface • How to find the MEP? • Minimum Energy Path

(MEP)

- Product states for Ni(111)
- Transition states for Ni(111)

• Product states for Pt(111)

• Transition states for Pt(111)

Temperature dependence

Dynamics

Comparison with the experiments

Conclusion

Climbing Image - NEB method (Henkelman et al.)

 \Rightarrow The transition state is found, and the images are evenly spaced on each side of the TS

Motivations

Theory

Electronic structure calculations and potential energy surface

• Electronic structure calculations

• Potential energy surface

• How to find the MEP?

• Minimum Energy Path (MEP)

• Product states for Ni(111)

• Transition states for Ni(111)

• Product states for Pt(111)

• Transition states for Pt(111)

Temperature dependence

Dynamics

Comparison with the experiments

Motivations

Theory

Electronic structure calculations and potential energy surface

• Electronic structure calculations

• Potential energy surface

• How to find the MEP?

• Minimum Energy Path (MEP)

• Product states for Ni(111)

• Transition states for Ni(111)

• Product states for Pt(111)

• Transition states for Pt(111)

Temperature dependence

Dynamics

Comparison with the experiments

Motivations

Theory

Electronic structure calculations and potential energy surface

• Electronic structure calculations

• Potential energy surface

• How to find the MEP?

• Minimum Energy Path (MEP)

• Product states for Ni(111)

• Transition states for Ni(111)

• Product states for Pt(111)

• Transition states for Pt(111)

Temperature dependence

Dynamics

Comparison with the experiments

Motivations

Theory

Electronic structure calculations and potential energy surface

• Electronic structure calculations

• Potential energy surface

• How to find the MEP?

• Minimum Energy Path (MEP)

• Product states for Ni(111)

• Transition states for Ni(111)

• Product states for Pt(111)

• Transition states for Pt(111)

Temperature dependence

Dynamics

Comparison with the experiments

Motivations

Theory

Electronic structure calculations and potential energy surface

• Electronic structure calculations

• Potential energy surface

• How to find the MEP?

• Minimum Energy Path (MEP)

• Product states for Ni(111)

• Transition states for Ni(111)

• Product states for Pt(111)

• Transition states for Pt(111)

Temperature dependence

Dynamics

Comparison with the experiments

Motivations

Theory

Electronic structure calculations and potential energy surface

• Electronic structure calculations

• Potential energy surface

• How to find the MEP?

• Minimum Energy Path (MEP)

• Product states for Ni(111)

• Transition states for Ni(111)

• Product states for Pt(111)

• Transition states for Pt(111)

Temperature dependence

Dynamics

Comparison with the experiments

Motivations

Theory

Electronic structure calculations and potential energy surface

• Electronic structure calculations

• Potential energy surface

• How to find the MEP?

• Minimum Energy Path (MEP)

• Product states for Ni(111)

• Transition states for Ni(111)

• Product states for Pt(111)

• Transition states for Pt(111)

Temperature dependence

Dynamics

Comparison with the experiments

Motivations

Theory

Electronic structure calculations and potential energy surface

• Electronic structure calculations

• Potential energy surface

• How to find the MEP?

• Minimum Energy Path (MEP)

• Product states for Ni(111)

• Transition states for Ni(111)

• Product states for Pt(111)

• Transition states for Pt(111)

Temperature dependence

Dynamics

Comparison with the experiments

Motivations

Theory

Electronic structure calculations and potential energy surface

• Electronic structure calculations

• Potential energy surface

• How to find the MEP?

• Minimum Energy Path (MEP)

• Product states for Ni(111)

• Transition states for Ni(111)

• Product states for Pt(111)

• Transition states for Pt(111)

Temperature dependence

Dynamics

Comparison with the experiments

Motivations

Theory

Electronic structure calculations and potential energy surface

• Electronic structure calculations

• Potential energy surface

• How to find the MEP?

• Minimum Energy Path (MEP)

• Product states for Ni(111)

• Transition states for Ni(111)

• Product states for Pt(111)

• Transition states for Pt(111)

Temperature dependence

Dynamics

Comparison with the experiments

Motivations

Theory

Electronic structure calculations and potential energy surface

• Electronic structure calculations

• Potential energy surface

• How to find the MEP?

• Minimum Energy Path (MEP)

• Product states for Ni(111)

• Transition states for Ni(111)

• Product states for Pt(111)

• Transition states for Pt(111)

Temperature dependence

Dynamics

Comparison with the experiments

Motivations

Theory

Electronic structure calculations and potential energy surface

• Electronic structure calculations

• Potential energy surface

• How to find the MEP?

• Minimum Energy Path (MEP)

• Product states for Ni(111)

• Transition states for Ni(111)

• Product states for Pt(111)

• Transition states for Pt(111)

Temperature dependence

Dynamics

Comparison with the experiments

Motivations

Theory

Electronic structure calculations and potential energy surface

• Electronic structure calculations

• Potential energy surface

• How to find the MEP?

• Minimum Energy Path (MEP)

• Product states for Ni(111)

• Transition states for Ni(111)

• Product states for Pt(111)

• Transition states for Pt(111)

Temperature dependence

Dynamics

Comparison with the experiments

Motivations

Theory

Electronic structure calculations and potential energy surface

• Electronic structure calculations

• Potential energy surface

• How to find the MEP?

• Minimum Energy Path (MEP)

• Product states for Ni(111)

• Transition states for Ni(111)

• Product states for Pt(111)

• Transition states for Pt(111)

Temperature dependence

Dynamics

Comparison with the experiments

Motivations

Theory

Electronic structure calculations and potential energy surface

• Electronic structure calculations

• Potential energy surface

• How to find the MEP?

• Minimum Energy Path (MEP)

• Product states for Ni(111)

• Transition states for Ni(111)

• Product states for Pt(111)

• Transition states for Pt(111)

Temperature dependence

Dynamics

Comparison with the experiments

Motivations

Theory

Electronic structure calculations and potential energy surface

• Electronic structure calculations

• Potential energy surface

• How to find the MEP?

• Minimum Energy Path (MEP)

• Product states for Ni(111)

• Transition states for Ni(111)

• Product states for Pt(111)

• Transition states for Pt(111)

Temperature dependence

Dynamics

Comparison with the experiments

Motivations

Theory

Electronic structure calculations and potential energy surface

• Electronic structure calculations

• Potential energy surface

• How to find the MEP?

• Minimum Energy Path (MEP)

• Product states for Ni(111)

• Transition states for Ni(111)

• Product states for Pt(111)

• Transition states for Pt(111)

Temperature dependence

Dynamics

Comparison with the experiments

Methane Dissociation

Product states for Ni(111)

Methane Dissociation

May 6 2009 - 13 / 41

Product states for Ni(111)

• Does the lowest product state always lead to the lowest transition state?

Product states for Ni(111)

- Does the lowest product state always lead to the lowest transition state?
- Are all transition states first order saddle points?

Transition states for Ni(111)

Methane Dissociation

Product states for Pt(111)

Methane Dissociation

May 6 2009 - 16 / 41

Transition states for Pt(111)

Methane Dissociation

May 6 2009 - 17 / 41

Motivations

Theory

Electronic structure calculations and potential energy surface

Temperature

dependence

• Temperature

dependence

• Electronic and mechanical effects -

Ni(111)

• Mechanical effect - Ni(111)

• Electronic and mechanical effects -

Pt(111)

- Mechanical effect Pt(111)
- Electronic and mechanical effects

Dynamics

Comparison with the experiments

Conclusion

Temperature dependence

Motivations

Theory

Electronic structure calculations and potential energy surface

Temperature

dependence

- Temperature
- dependence
- Electronic and mechanical effects -

Ni(111)

 Mechanical effect -Ni(111)

• Electronic and

mechanical effects - Pt(111)

 Mechanical effect -Pt(111)

• Electronic and mechanical effects

Dynamics

Comparison with the experiments

Conclusion

The lattice motion is modeled by allowing the Ni atom over which the reaction occurs to move normal to the surface, corresponding to the DOF Q

Motivations

Theory

Electronic structure calculations and potential energy surface

Temperature dependence • Temperature dependence • Electronic and mechanical effects -Ni(111) • Mechanical effect -Ni(111) • Electronic and mechanical effects -

Pt(111)

 Mechanical effect -Pt(111)

• Electronic and mechanical effects

Dynamics

Comparison with the experiments

Conclusion

The lattice motion is modeled by allowing the Ni atom over which the reaction occurs to move normal to the surface, corresponding to the DOF Q

Methane Dissociation

May 6 2009 - 19 / 41

Motivations

Theory

Electronic structure calculations and potential energy surface

Temperature

dependence

• Temperature dependence

• Electronic and mechanical effects - Ni(111)

 Mechanical effect -Ni(111)

• Electronic and mechanical effects - Pt(111)

- Mechanical effect -Pt(111)
- Electronic and mechanical effects

Dynamics

Comparison with the experiments

Conclusion

- We consider two forms of the surface oscillator (SO) model:
- A Morse oscillator form (SO-M model), for which $V = V_0(Z Q, r, \theta) + V_l(Q)$

- A harmonic form (SO-H model), for which

$$V = V_0(Z - Q, r, \theta) + \frac{1}{2}\kappa Q^2$$

[Luntz and Harris, Surf. Sci. 258, 397 (1991)]

Motivations

Theory

Electronic structure calculations and potential energy surface

Temperature

dependence

• Temperature dependence

• Electronic and mechanical effects - Ni(111)

 Mechanical effect -Ni(111)

• Electronic and mechanical effects - Pt(111)

 Mechanical effect -Pt(111)

• Electronic and mechanical effects

Dynamics

Comparison with the experiments

Conclusion

- We consider two forms of the surface oscillator (SO) model:
- A Morse oscillator form (SO-M model), for which $V = V_0(Z - Q, r, \theta) + V_l(Q)$ - A harmonic form (SO-H model), for which $V = V_0(Z - Q, r, \theta) + \frac{1}{2}\kappa Q^2$

[Luntz and Harris, Surf. Sci. 258, 397 (1991)]

 In our lattice reconstruction (LR) model, we allow the lattice to fully respond to the presence of the methane.
For five values of Q, the MEP is computed using the CI-NEB method

electronic effect, and the mechanical effect

Methane Dissociation

May 6 2009 - 21 / 41

Electronic and mechanical effects - Ni(111)

Motivations

Theory

Electronic structure calculations and potential energy surface

Temperature

dependence

• Temperature dependence

• Electronic and mechanical effects - Ni(111)

• Mechanical effect - Ni(111)

• Electronic and mechanical effects - Pt(111)

 Mechanical effect -Pt(111)

• Electronic and mechanical effects

Dynamics

Comparison with the experiments

Conclusion

Ni(111)	E_b (eV)	ΔE_b (eV)	Z_b (Å)	ΔZ_b (Å)
Q = -0.2 Å	1.325	0.250	1.923	-0.133
Q = -0.1 Å	1.196	0.121	1.994	-0.063
Q = 0.0 Å	1.075	0.000	2.057	0.000
Q = 0.1 Å	0.963	-0.112	2.133	0.076
$Q = 0.2 \text{ \AA}$	0.862	-0.213	2.202	0.145

To fit the barrier height $E_b(Q)$, 3 LEPS parameters are made Q-dependent (D_1 , D_2 , and Δ_3)

Mechanical effect - Ni(111)

Methane Dissociation

May 6 2009 - 23 / 41

Electronic and mechanical effects - Pt(111)

Motivations

Theory

Electronic structure calculations and potential energy surface

Temperature

dependence

• Temperature dependence

• Electronic and mechanical effects - Ni(111)

 Mechanical effect -Ni(111)

• Electronic and mechanical effects - Pt(111)

 Mechanical effect -Pt(111)

• Electronic and mechanical effects

Dynamics

Comparison with the experiments

Conclusion

Pt(111)	E_b (eV)	ΔE_b (eV)	Z_b (Å)	ΔZ_b (Å)
Q = -0.2 Å	1.171	0.237	2.048	-0.156
Q = -0.1 Å	1.041	0.107	2.123	-0.081
Q = 0.0 Å	0.934	0.000	2.204	0.000
$Q = 0.1 \text{ \AA}$	0.851	-0.083	2.289	0.085
$Q = 0.2 \text{ \AA}$	0.787	-0.147	2.377	0.173

To fit the barrier height $E_b(Q)$, 3 LEPS parameters are made Q-dependent (D_1 , D_2 , and Δ_3)

Mechanical effect - Pt(111)

Methane Dissociation

May 6 2009 - 25 / 41

Motivations

Theory

Electronic structure calculations and potential energy surface

Temperature

dependence

• Temperature

dependence

• Electronic and

mechanical effects -Ni(111)

 Mechanical effect -Ni(111)

• Electronic and mechanical effects -

Pt(111)

• Mechanical effect - Pt(111)

• Electronic and mechanical effects

Dynamics

Comparison with the experiments

Conclusion

• Electronic effect: The lattice puckers during the reaction (puckering effect). The barrier becomes lower when Q increases, enhancing the reactivity

Motivations

Theory

Electronic structure calculations and potential energy surface

Temperature

dependence

• Temperature dependence

• Electronic and mechanical effects - Ni(111)

 Mechanical effect -Ni(111)

• Electronic and mechanical effects - Pt(111)

 Mechanical effect -Pt(111)

• Electronic and mechanical effects

Dynamics

Comparison with the experiments

- Electronic effect: The lattice puckers during the reaction (puckering effect). The barrier becomes lower when Q increases, enhancing the reactivity
- Mechanical effect: The lattice atom recoils into the bulk during the reaction (recoil effect). This takes energy away from the reaction coordinate, increasing the apparent activation barrier and lowering the reactivity

Motivations

Theory

Electronic structure calculations and potential energy surface

Temperature

dependence

• Temperature dependence

- Electronic and mechanical effects Ni(111)
- Mechanical effect -Ni(111)

• Electronic and mechanical effects - Pt(111)

• Mechanical effect - Pt(111)

• Electronic and mechanical effects

Dynamics

Comparison with the experiments

Conclusion

- Electronic effect: The lattice puckers during the reaction (puckering effect). The barrier becomes lower when Q increases, enhancing the reactivity
- Mechanical effect: The lattice atom recoils into the bulk during the reaction (recoil effect). This takes energy away from the reaction coordinate, increasing the apparent activation barrier and lowering the reactivity

• PES: $V_0(Z, r, \theta) \Rightarrow V_{new}(Q, Z - \alpha Q, r, \theta) + V_l(Q)$

Motivations

Theory

Electronic structure calculations and potential energy surface

Temperature

dependence

• Temperature dependence

- Electronic and mechanical effects Ni(111)
- Mechanical effect -Ni(111)
- Electronic and mechanical effects Pt(111)
- Mechanical effect Pt(111)

• Electronic and mechanical effects

Dynamics

Comparison with the experiments

Conclusion

- Electronic effect: The lattice puckers during the reaction (puckering effect). The barrier becomes lower when Q increases, enhancing the reactivity
- Mechanical effect: The lattice atom recoils into the bulk during the reaction (recoil effect). This takes energy away from the reaction coordinate, increasing the apparent activation barrier and lowering the reactivity

• PES: $V_0(Z, r, \theta) \Rightarrow V_{new}(Q, Z - \alpha Q, r, \theta) + V_l(Q)$

• There is a competition between the puckering effect and the recoil effect

Motivations

Theory

Electronic structure calculations and potential energy surface

Temperature

dependence

Dynamics

- Dynamics
- Wavepacket evolution

• Lattice response -CH₄ on Ni(111) and Pt(111)

- Dynamics CH_4 on Ni(111)
- Dynamics CH_4 on Pt(111)
- Dynamics CH₄ on Ni(111) and Pt(111)

Comparison with the experiments

Conclusion

Dynamics

Motivations

Theory

Electronic structure calculations and potential energy surface

Temperature

dependence

Dynamics

- Dynamics
- Wavepacket evolution

• Lattice response - CH_4 on Ni(111) and Pt(111)

• Dynamics - CH_4 on Ni(111)

• Dynamics - CH_4 on Pt(111)

```
• Dynamics - CH<sub>4</sub> on Ni(111) and Pt(111)
```

Comparison with the experiments

Conclusion

To compute the reaction probabilities, we use a time-dependent method involving a small time step propagator

• Hamiltonian,

$$\hat{H} = \hat{H}_0 + \hat{V} = -\frac{\hbar^2 \nabla_Q^2}{2M_s} - \frac{\hbar^2 \nabla_Z^2}{2M} - \frac{\hbar^2 \nabla_{\vec{r}}^2}{2\mu} + V(Q, Z, r, \theta),$$

where $M_s={\rm Ni}$ mass, $M={\rm CH}_4$ mass, and $\mu={\rm CH}_3{\rm -H}$ reduced mass

Motivations

Theory

Electronic structure calculations and potential energy surface

Temperature

dependence

Dynamics

- Dynamics
- Wavepacket evolution

• Lattice response - CH_4 on Ni(111) and Pt(111)

• Dynamics - CH₄ on Ni(111)

• Dynamics - CH_4 on Pt(111)

• Dynamics - CH₄ on Ni(111) and Pt(111)

Comparison with the experiments

Conclusion

To compute the reaction probabilities, we use a time-dependent method involving a small time step propagator

• Hamiltonian,

$$\hat{H} = \hat{H}_0 + \hat{V} = -\frac{\hbar^2 \nabla_Q^2}{2M_s} - \frac{\hbar^2 \nabla_Z^2}{2M} - \frac{\hbar^2 \nabla_{\vec{r}}^2}{2\mu} + V(Q, Z, r, \theta),$$

where $M_s={\rm Ni}$ mass, $M={\rm CH}_4$ mass, and $\mu={\rm CH}_3{\rm -H}$ reduced mass

• Time-dependent Schrödinger equation, $i\hbar \frac{\partial \Psi(t)}{\partial t} = \hat{H}\Psi(t) \Rightarrow \Psi(t) = e^{-i\frac{\hat{H}}{\hbar}\Delta t}\Psi(0)$

Motivations

Theory

Electronic structure calculations and potential energy surface

Temperature

dependence

Dynamics

- Dynamics
- Wavepacket evolution
- Lattice response CH_4 on Ni(111) and Pt(111)
- Dynamics CH₄ on Ni(111)
- Dynamics CH_4 on Pt(111)

• Dynamics - CH₄ on Ni(111) and Pt(111)

Comparison with the experiments

Conclusion

To compute the reaction probabilities, we use a time-dependent method involving a small time step propagator

• Hamiltonian,

$$\hat{H} = \hat{H}_0 + \hat{V} = -\frac{\hbar^2 \nabla_Q^2}{2M_s} - \frac{\hbar^2 \nabla_Z^2}{2M} - \frac{\hbar^2 \nabla_{\vec{r}}^2}{2\mu} + V(Q, Z, r, \theta),$$

where $M_s={\rm Ni}$ mass, $M={\rm CH}_4$ mass, and $\mu={\rm CH}_3{\rm -H}$ reduced mass

- Time-dependent Schrödinger equation, $i\hbar \frac{\partial \Psi(t)}{\partial t} = \hat{H}\Psi(t) \Rightarrow \Psi(t) = e^{-i\frac{\hat{H}}{\hbar}\Delta t}\Psi(0)$
- Second-order Split Operator Propagator (SOP), $\hat{U}(\Delta t) = e^{-i\frac{\hat{H}_0}{2\hbar}\Delta t}e^{-i\frac{\hat{V}}{\hbar}\Delta t}e^{-i\frac{\hat{H}_0}{2\hbar}\Delta t} + \hat{O}(\Delta t^3)$

Motivations

Theory

Electronic structure calculations and potential energy surface

Temperature

dependence

Dynamics

- Dynamics
- Wavepacket evolution

 \bullet Lattice response - CH_4 on Ni(111) and

Pt(111)

• Dynamics - CH₄ on Ni(111)

 \bullet Dynamics - CH_4 on Pt(111)

• Dynamics - CH₄ on Ni(111) and Pt(111)

Comparison with the experiments

Conclusion

• Initial wave function, $\Psi(0) = \frac{1}{r\sqrt{2\pi}} \zeta_{n_0}(Q) G(Z) \xi_{v_0}^{j_0}(r) \Theta_{j_0}^{m_0}(\theta) e^{im_0 \phi}$
Dynamics

Motivations

Theory

Electronic structure calculations and potential energy surface

Temperature

dependence

Dynamics

- Dynamics
- Wavepacket evolution

• Lattice response - CH_4 on Ni(111) and Pt(111)

• Dynamics - CH₄ on Ni(111)

• Dynamics - CH_4 on Pt(111)

• Dynamics - CH₄ on Ni(111) and Pt(111)

Comparison with the experiments

Conclusion

• Initial wave function, $\Psi(0) = \frac{1}{r\sqrt{2\pi}} \zeta_{n_0}(Q) G(Z) \xi_{v_0}^{j_0}(r) \Theta_{j_0}^{m_0}(\theta) e^{im_0 \phi}$

 FBR-DVR Formalism ⇒ Discrete transforms (Fourier, Bessel, Gauss-Legendre)

Dynamics

Motivations

Theory

Electronic structure calculations and potential energy surface

Temperature

dependence

Dynamics

- Dynamics
- Wavepacket evolution

• Lattice response - CH_4 on Ni(111) and Pt(111)

• Dynamics - CH₄ on Ni(111)

• Dynamics - CH₄ on Pt(111)

• Dynamics - CH₄ on Ni(111) and Pt(111)

Comparison with the experiments

Conclusion

• Initial wave function, $\Psi(0) = \frac{1}{r\sqrt{2\pi}} \zeta_{n_0}(Q) G(Z) \xi_{v_0}^{j_0}(r) \Theta_{j_0}^{m_0}(\theta) e^{im_0 \phi}$

 FBR-DVR Formalism ⇒ Discrete transforms (Fourier, Bessel, Gauss-Legendre)

• Flux-analysis to extract the reaction probabilities

Methane Dissociation

May 6 2009 - 30 / 41

Methane Dissociation

May 6 2009 - 30 / 41

Lattice response - CH_4 on Ni(111) and Pt(111)

Dynamics - CH_4 on Ni(111)

Dynamics - CH_4 on Pt(111)

Motivations

Theory

Electronic structure calculations and potential energy surface

Temperature

dependence

Dynamics

- Dynamics
- Wavepacket evolution

• Lattice response - CH_4 on Ni(111) and Pt(111)

• Dynamics - CH₄ on Ni(111)

• Dynamics - CH_4 on Pt(111)

• Dynamics - CH₄ on Ni(111) and Pt(111)

Comparison with the experiments

Conclusion

• Reaction probabilities for a given n_0 are computed with a 4D (Q, Z, r, θ) time-dependent wavepacket method (n_0 is the initial lattice quantum number)

Motivations

Theory

Electronic structure calculations and potential energy surface

Temperature

dependence

Dynamics • Dynamics

Wavepacket evolution

• Lattice response - CH_4 on Ni(111) and Pt(111)

• Dynamics - CH₄ on Ni(111)

• Dynamics - CH₄ on Pt(111)

• Dynamics - CH₄ on Ni(111) and Pt(111)

Comparison with the experiments

Conclusion

- Reaction probabilities for a given n_0 are computed with a 4D (Q, Z, r, θ) time-dependent wavepacket method (n_0 is the initial lattice quantum number)
- Reaction probabilities for a given surface temperature (T_s) are computed by Boltzmann averaging the previous results over n_0

Motivations

Theory

Electronic structure calculations and potential energy surface

Temperature

dependence

DynamicsDynamics

Wavepacket evolution

• Lattice response - CH_4 on Ni(111) and Pt(111)

• Dynamics - CH₄ on Ni(111)

• Dynamics - CH₄ on Pt(111)

• Dynamics - CH₄ on Ni(111) and Pt(111)

Comparison with the experiments

Conclusion

- Reaction probabilities for a given n_0 are computed with a 4D (Q, Z, r, θ) time-dependent wavepacket method (n_0 is the initial lattice quantum number)
- Reaction probabilities for a given surface temperature (T_s) are computed by Boltzmann averaging the previous results over n_0
- However, energy levels spacings are very small for both Ni(111) and Pt(111) (≈ 21 meV for Ni(111) and ≈ 11 meV for Pt(111))

Motivations

Theory

Electronic structure calculations and potential energy surface

Temperature

dependence

DynamicsDynamics

Wavepacket evolution

• Lattice response -CH₄ on Ni(111) and Pt(111)

• Dynamics - CH₄ on Ni(111)

• Dynamics - CH₄ on Pt(111)

• Dynamics - CH₄ on Ni(111) and Pt(111)

Comparison with the experiments

Conclusion

- Reaction probabilities for a given n_0 are computed with a 4D (Q, Z, r, θ) time-dependent wavepacket method (n_0 is the initial lattice quantum number)
- Reaction probabilities for a given surface temperature (T_s) are computed by Boltzmann averaging the previous results over n_0
- However, energy levels spacings are very small for both Ni(111) and Pt(111) (≈ 21 meV for Ni(111) and ≈ 11 meV for Pt(111))

 \Rightarrow Many n_0 states are required to converge the Boltzmann distribution (≈ 20 states for Ni(111) and ≈ 50 states for Pt(111))

Motivations

Theory

Electronic structure calculations and potential energy surface

Temperature

dependence

Dynamics

Comparison with the experiments

 \bullet Experiments from Killelea and Utz - CD $_3\,{\rm H}$ on Ni(111)

• Experiments from Campbell and Utz -CH₄ on Ni(111)

• Experiments from Bisson *et al.* - CH₄ on Ni(111) and Pt(111)

Conclusion

Comparison with the experiments

Experiments from Killelea and Utz - CD_3H on Ni(111)

Electronic structure calculations and potential energy surface

Temperature

dependence

Dynamics

• Experiments from Killelea and Utz - CD₃H on Ni(111)

Campbell and Utz - CH₄ on Ni(111)

• Experiments from

Bisson et al. - CH_4 on

Ni(111) and Pt(111)

Conclusion

Experiments from Campbell and Utz - CH_4 on Ni(111)

Experiments from Campbell and Utz - CH_4 on Ni(111)

Experiments from Bisson *et al.* - CH₄ on Ni(111) and Pt(111)

Experiments from Bisson *et al.* - CH₄ on Ni(111) and Pt(111)

Motivations

Motivations

Theory

Electronic structure calculations and potential energy surface

Temperature

dependence

Dynamics

Comparison with the experiments

Conclusion

• Conclusion and

perspectives

Conclusion

Motivations

Theory

Electronic structure calculations and potential energy surface

Temperature

dependence

Dynamics

Comparison with the experiments

Conclusion

• Conclusion and

perspectives

- Results for Ni(111) and Pt(111) published in:
- S. Nave and B. Jackson, Phys. Rev. Lett. 98, 173003 (2007)
- S. Nave and B. Jackson, J. Chem. Phys. 127, 224702 (2007)
- S. Nave and B. Jackson, J. Chem. Phys. 130, 054701 (2009)

Motivations

Theory

Electronic structure calculations and potential energy surface

Temperature

dependence

Dynamics

Comparison with the experiments

Conclusion

• Conclusion and perspectives

- Results for Ni(111) and Pt(111) published in:
- S. Nave and B. Jackson, Phys. Rev. Lett. 98, 173003 (2007)
 S. Nave and B. Jackson, J. Chem. Phys. 127, 224702 (2007)
- S. Nave and B. Jackson, J. Chem. Phys. 130, 054701 (2009)

• Lack of reactivity for CH₄ on Pt(111)

Motivations

Theory

Electronic structure calculations and potential energy surface

Temperature

dependence

Dynamics

Comparison with the experiments

Conclusion

• Conclusion and perspectives

- Results for Ni(111) and Pt(111) published in:
- S. Nave and B. Jackson, Phys. Rev. Lett. 98, 173003 (2007)
 S. Nave and B. Jackson, J. Chem. Phys. 127, 224702 (2007)
 S. Nave and B. Jackson, J. Chem. Phys. 120, 054704 (2000)
- S. Nave and B. Jackson, J. Chem. Phys. **130**, 054701 (2009)
 - Lack of reactivity for CH₄ on Pt(111)
 - Extend this method to the Ni(100), Pt(100), and Pt(110)-(1 \times 2) surfaces

Motivations

Theory

Electronic structure calculations and potential energy surface

Temperature

dependence

Dynamics

Comparison with the experiments

Conclusion

• Conclusion and perspectives

- Results for Ni(111) and Pt(111) published in:
- S. Nave and B. Jackson, Phys. Rev. Lett. 98, 173003 (2007)
 S. Nave and B. Jackson, J. Chem. Phys. 127, 224702 (2007)
 S. Nave and B. Jackson, J. Chem. Phys. 130, 054701 (2009)
 - - Lack of reactivity for CH₄ on Pt(111)
 - Extend this method to the Ni(100), Pt(100), and Pt(110)-(1×2) surfaces
 - $\bullet\,\,{\rm Treat}\,Z$ and Q classically to save some computing time

Motivations

Theory

Electronic structure calculations and potential energy surface

Temperature

dependence

Dynamics

Comparison with the experiments

Conclusion

• Conclusion and perspectives

- Results for Ni(111) and Pt(111) published in:
- S. Nave and B. Jackson, Phys. Rev. Lett. 98, 173003 (2007)
 S. Nave and B. Jackson, J. Chem. Phys. 127, 224702 (2007)
 S. Nave and B. Jackson, J. Chem. Phys. 130, 054701 (2009)
 - Lack of reactivity for CH₄ on Pt(111)
 - Extend this method to the Ni(100), Pt(100), and Pt(110)-(1 \times 2) surfaces
 - $\bullet\,\, {\rm Treat}\, Z \ {\rm and}\, Q \ {\rm classically} \ {\rm to} \ {\rm save} \ {\rm some} \ {\rm computing} \ {\rm time}$
 - Additional DFT calculations might be needed, in particular to characterize the *Q*-dependence