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e Born-Oppenheimer approximation
e Adiabatic approximation

e This splits the problem in 2 parts

= Electronic structure calculations (15 DOFs for methane)

= Dynamics

DFT results are fit with a LEPS form, which depends on only 3

DOFs: Z, r,and 6, and we set V' = V,(Z, r, 0)
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To compute the total electronic energies, we use the Vienna

Ab initio Simulation Package (VASP)

e Density Functional Theory (DFT)

e Fully non-local optimized ultrasoft pseudopotential
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e Non-local exchange-correlation effects: PW91 functional
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e The PES is based onto a LEPS form
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e CHs-H interaction: Morse function (3 parameters)

e H-Metal interaction: Morse function (3 parameters)
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Product states for Ni(111)

(Ni111PSb2) (Ni111PSh1b) (Ni111PSh3a)
E, =0.735 eV E, = 0.361 eV E, = 0.387 eV

(Ni111PSb2n) (Ni111PSh1bn) (Ni111PSh3an)
E, =0.736 eV E, =0.537 eV E, = 0.553 eV

' Methane Dissociation May 6 2009 — 13/ 41 '



Product states for Ni(111)

e Does the lowest product state always lead to the lowest transition
state?
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Product states for Ni(111)

e Does the lowest product state always lead to the lowest transition
state?

e Are all transition states first order saddle points?
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Transition states for Ni(111)

(Ni111TSb2) (Ni111TSh1b) (Ni111TSh3a)
Ey,=1.116 eV Ey, =1.075eV Ey,=1.072eV

(Ni111TSb2n) (Ni111TSh1bn) (Ni111TSh3an)
Ey, =1.101 eV Ey = 1.068 eV Ey, = 1.065 eV
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Product states for Pt(111)

(Pt111PSt2) (Pt111PSh1la) (Pt111PSh3b)
E, =0.308 eV E,=0.182eV E, =0.251 eV

(Pt111PSt2n) (Pt111PShlan) (Pt111PSh3bn)
E, =0.308 eV E, =0.169 eV E, =0.225eV
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Transition states for Pt(111)

(Pt111TSt2) (Pt111TSh1la) (Pt111TSh3b)
E, =0.928 eV Ey = 0.962 eV Ey =0.949 eV

(Pt111TSt2n) (Pt111TShlan) (Pt111TSh3bn)
E, =0.934 eV E, =0.978 eV E, = 0.955 eV
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The lattice motion is modeled by allowing the Ni atom over
which the reaction occurs to move normal to the surface,
corresponding to the DOF ()

L (8
r ZB
A Z
ZA
Ni
Nir™ @Q Nir™
/ -/

"O

—> lattice=single oscillator

O "0
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e We consider two forms of the surface oscillator (SO)

model:

- A Morse oscillator form (SO-M model), for which
V = ‘/O(Z T Q7T7 6)) T W(Q)

- A harmonic form (SO-H model), for which
V=V(Z—-Q,r0) + 1kQ?

[Luntz and Harris, Surf. Sci. 258, 397 (1991)]
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e We consider two forms of the surface oscillator (SO)

model:

- A Morse oscillator form (SO-M model), for which
V = ‘/O(Z T Q7T7 6)) T W(Q)

- A harmonic form (SO-H model), for which
V=V(Z—-Q,r0) + 1kQ?

[Luntz and Harris, Surf. Sci. 258, 397 (1991)]

e |n our lattice reconstruction (LR) model, we allow the
lattice to fully respond to the presence of the methane.
For five values of (), the MEP is computed using the

CI-NEB method
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1.6 — 1 1 r T T T T T Y
L ——Q=-024A
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——Q=0.1A4A
I = 02A
10} Q
> I
L
> 0.8}
on
§ i
M 06 |
0.4 |
0.2 | / a
0.0 .
) | ) | ) | ) | ) |
0 1 2 3 4 5 7 8

Reaction Coordinate (A)

= When () varies, two important properties can be seen: The

electronic effect, and the mechanical effect
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Ni(111)

Fy, (eV)

AEb (eV)

Zy (A)

AZy (A)

—0.2 A

1.325

0.250

1.923

—0.133

Q
Q= —0.1A

1.196

0.121

1.994

—0.063

QQ=00A

1.075

0.000

2.057

0.000

QO=01A

0.963

—0.112

2.133

0.076

Q=024

0.8362

—0.213

2.202

0.145

To fit the barrier height £, ((), 3 LEPS parameters are made
()-dependent (D1, D5, and As)
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Mechanical effect - Ni(111)

2.25 — 1 1 T T 1 T T I
290 L Ni(111)

. .
215 L DFT points

Fit with o= 0.6967

2.10

2.05

Z, (A)

2.00

1.95

1.90

185 1 | 1 | 1 | 1

-0.20 -0.15 -0.10 -0.05

0.00
Q(A)

0.05

0.10

0.15 0.20

The barrier location Z;(()) can be approximated with a linear

fit, = o = 0.697

Methane Dissociation

May 6 2009 — 23/ 41 -



-1

Electronic and mechanical effects - Pt(111)

Motivations

Theory

Electronic structure
calculations and
potential energy surface

Temperature
dependence

® Temperature
dependence

e Electronic and
mechanical effects -
Ni(111)

@ Mechanical effect -
Ni(111)

@ Electronic and
mechanical effects -
Pt(111)

® Mechanical effect -
Pt(111)

@ Electronic and
mechanical effects

Dynamics

Comparison with the
experiments

Conclusion

Pt(111)

Fy, (eV)

AEb (eV)

Zy (A)

AZy (A)

—0.2 A

1.171

0.237

2.048

—0.156

Q
Q= —0.1A

1.041

0.107

2.123

—0.081

QQ=00A

0.934

0.000

2.204

0.000

QO=01A

0.801

—0.083

2.289

0.085

Q=024

0.787

—0.147

2.377

0.173

To fit the barrier height £, ((), 3 LEPS parameters are made
()-dependent (D1, D5, and As)
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Mechanical effect - Pt(111)

240 —————————
235 L Pt(111)

. .
230 L DFT points

2.25

2.20

Z, (A)

2.15

2.10

2.05

o0 b—m 1 1.

Fit with o = 0.8239

-0.20 -0.15 -0.10 -0.05

0.00
Q(A)
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The barrier location Z;(()) can be approximated with a linear
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Electronic and mechanical effects

e Electronic effect: The lattice puckers during the reaction
(puckering effect). The barrier becomes lower when ()

Increases, enhancing the reactivity
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(puckering effect). The barrier becomes lower when ()

Increases, enhancing the reactivity
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Electronic effect: The lattice puckers during the reaction
(puckering effect). The barrier becomes lower when ()

Increases, enhancing the reactivity

Mechanical effect: The lattice atom recolls into the bulk
during the reaction (recoll effect). This takes energy away
from the reaction coordinate, increasing the apparent

activation barrier and lowering the reactivity

PES: Vo(Z,7,0) = V43ew(Q, Z—aQ, 1,0) + Vi(Q)

There is a competition between the puckering effect and

the recoll effect
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e [nitial wave function,
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e [nitial wave function,
1
\IJ(O) — WQ’LO

(Q)G(Z)E (r)@To()eimod

e FBR-DVR Formalism = Discrete transforms (Fourier,

Bessel, Gauss-Legendre)
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Dynamics - CH 4 on Ni(111) and Pt(111)

e Reaction probabilities for a given ng are computed with a
4D (Q), Z, r, 0) time-dependent wavepacket method (n

IS the initial lattice quantum number)
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Dynamics - CH 4 on Ni(111) and Pt(111)

e Reaction probabilities for a given ng are computed with a
4D (Q), Z, r, 0) time-dependent wavepacket method (n

IS the initial lattice quantum number)

e Reaction probabilities for a given surface temperature
(1) are computed by Boltzmann averaging the previous

results over ny

e However, energy levels spacings are very small for both
Ni(111) and Pt(111) (= 21 meV for Ni(111) and ~ 11

meV for Pt(111))
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Conclusion

e Reaction probabilities for a given ng are computed with a

4D (Q), Z, r, 0) time-dependent wavepacket method (n

IS the initial lattice quantum number)

e Reaction probabilities for a given surface temperature

(1) are computed by Boltzmann averaging the previous

results over ny

e However, energy levels spacings are very small for both

Ni(111) and Pt(111) (= 21 meV for Ni(111) and ~ 11

meV for Pt(111))

= Many n states are required to converge the Boltzmann
distribution (= 20 states for Ni(111) and ~ 50 states for
Pt(111))
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Conclusion and perspectives

e Results for Ni(111) and Pt(111) published in:

- S. Nave and B. Jackson, Phys. Rev. Lett. 98, 173003 (2007)
- S. Nave and B. Jackson, J. Chem. Phys. 127, 224702 (2007)
- S. Nave and B. Jackson, J. Chem. Phys. 130, 054701 (2009)
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e Lack of reactivity for CH, on Pt(111)
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e Lack of reactivity for CH, on Pt(111)
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e Results for Ni(111) and Pt(111) published in:

- S. Nave and B. Jackson, Phys. Rev. Lett. 98, 173003 (2007)
- S. Nave and B. Jackson, J. Chem. Phys. 127, 224702 (2007)
- S. Nave and B. Jackson, J. Chem. Phys. 130, 054701 (2009)

e Lack of reactivity for CH, on Pt(111)

e Extend this method to the Ni(100), Pt(100), and
Pt(110)-(1x2) surfaces

e Treat Z and () classically to save some computing time

e Additional DFT calculations might be needed, in
particular to characterize the ()-dependence
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