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• Study and understand the methane dissociation on
metals

• Understand the influence of the surface temperature on
the reactivity

⇒ We wish to elucidate some unexplained variations in
reactivity and temperature dependence from one metal to
another
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• Born-Oppenheimer approximation

• Adiabatic approximation

• This splits the problem in 2 parts

⇒ Electronic structure calculations (15 DOFs for methane)

⇒ Dynamics

DFT results are fit with a LEPS form, which depends on only 3
DOFs: Z , r, and θ, and we set V = V0(Z, r, θ)
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A=CH3, B=H, only 3 DOFs (Z , r, and θ)
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To compute the total electronic energies, we use the Vienna
Ab initio Simulation Package (VASP)

• Density Functional Theory (DFT)

• Fully non-local optimized ultrasoft pseudopotential
(USPP), or projected augmented wave potential (PAWP)

• Non-local exchange-correlation effects: PW91 functional
(GGA), or PBE functional (GGA)

• Asymmetric slab supercell with periodic boundary
conditions for the metal surface

• Plane wave basis set
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(Ni111PSh1b)

⇒ Ep = 0.361 eV
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• The PES is based onto a LEPS form
(London-Eyring-Polanyi-Sato)
⇒ Interpolation of DFT results

• CH3-H interaction: Morse function (3 parameters)

• H-Metal interaction: Morse function (3 parameters)

• CH3-Metal interaction: Morse function (3 parameters)

• The MEP gives the 3 Sato parameters

⇒ a total of 12 parameters for the 3D (Z , r, θ) LEPS
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Climbing Image - NEB method (Henkelman et al.)

0 1 2 3 4 5
1

2

3

4

5

6

Z 
(Å

)

r (Å)

LEPS potential

Start from a linear path of initial «images»



How to find the MEP?

Motivations

Theory

Electronic structure
calculations and
potential energy surface
• Electronic structure
calculations
• Potential energy
surface

• How to find the MEP?
• Minimum Energy Path
(MEP)

• Product states for
Ni(111)

• Transition states for
Ni(111)

• Product states for
Pt(111)

• Transition states for
Pt(111)

Temperature
dependence

Dynamics

Comparison with the
experiments

Conclusion

Methane Dissociation May 6 2009 – 11 / 41

Climbing Image - NEB method (Henkelman et al.)
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⇒ The transition state is found, and the images are evenly
spaced on each side of the TS
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Product states for Ni(111)
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(Ni111PSb2) (Ni111PSh1b) (Ni111PSh3a)

Ep = 0.735 eV Ep = 0.361 eV Ep = 0.387 eV

(Ni111PSb2n) (Ni111PSh1bn) (Ni111PSh3an)

Ep = 0.736 eV Ep = 0.537 eV Ep = 0.553 eV
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• Does the lowest product state always lead to the lowest transition
state?

• Are all transition states first order saddle points?



Transition states for Ni(111)
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(Ni111TSb2) (Ni111TSh1b) (Ni111TSh3a)

Eb = 1.116 eV Eb = 1.075 eV Eb = 1.072 eV

(Ni111TSb2n) (Ni111TSh1bn) (Ni111TSh3an)

Eb = 1.101 eV Eb = 1.068 eV Eb = 1.065 eV



Product states for Pt(111)
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(Pt111PSt2) (Pt111PSh1a) (Pt111PSh3b)

Ep = 0.308 eV Ep = 0.182 eV Ep = 0.251 eV

(Pt111PSt2n) (Pt111PSh1an) (Pt111PSh3bn)

Ep = 0.308 eV Ep = 0.169 eV Ep = 0.225 eV



Transition states for Pt(111)
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(Pt111TSt2) (Pt111TSh1a) (Pt111TSh3b)

Eb = 0.928 eV Eb = 0.962 eV Eb = 0.949 eV

(Pt111TSt2n) (Pt111TSh1an) (Pt111TSh3bn)

Eb = 0.934 eV Eb = 0.978 eV Eb = 0.955 eV
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The lattice motion is modeled by allowing the Ni atom over
which the reaction occurs to move normal to the surface,
corresponding to the DOF Q
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The lattice motion is modeled by allowing the Ni atom over
which the reaction occurs to move normal to the surface,
corresponding to the DOF Q

⇒ lattice=single oscillator (A=CH3 and B=H)
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• We consider two forms of the surface oscillator (SO)
model:

- A Morse oscillator form (SO-M model), for which
V = V0(Z − Q, r, θ) + Vl(Q)
- A harmonic form (SO-H model), for which
V = V0(Z − Q, r, θ) + 1

2
κQ2

[Luntz and Harris, Surf. Sci. 258, 397 (1991)]
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• We consider two forms of the surface oscillator (SO)
model:

- A Morse oscillator form (SO-M model), for which
V = V0(Z − Q, r, θ) + Vl(Q)
- A harmonic form (SO-H model), for which
V = V0(Z − Q, r, θ) + 1

2
κQ2

[Luntz and Harris, Surf. Sci. 258, 397 (1991)]

• In our lattice reconstruction (LR) model, we allow the
lattice to fully respond to the presence of the methane.
For five values of Q, the MEP is computed using the
CI-NEB method



Temperature dependence

Motivations

Theory

Electronic structure
calculations and
potential energy surface

Temperature
dependence
• Temperature
dependence
• Electronic and
mechanical effects -
Ni(111)

• Mechanical effect -
Ni(111)
• Electronic and
mechanical effects -
Pt(111)

• Mechanical effect -
Pt(111)
• Electronic and
mechanical effects

Dynamics

Comparison with the
experiments

Conclusion

Methane Dissociation May 6 2009 – 21 / 41

0 1 2 3 4 5 6 7 8

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

En
er

gy
 (e

V
)

Reaction Coordinate (Å)

 Q = -0.2 Å
 Q = -0.1 Å
 Q =  0.0 Å
 Q =  0.1 Å
 Q =  0.2 Å

⇒ When Q varies, two important properties can be seen: The
electronic effect, and the mechanical effect
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Ni(111) Eb (eV) ∆Eb (eV) Zb (Å) ∆Zb (Å)

Q = −0.2 Å 1.325 0.250 1.923 −0.133
Q = −0.1 Å 1.196 0.121 1.994 −0.063
Q = 0.0 Å 1.075 0.000 2.057 0.000
Q = 0.1 Å 0.963 −0.112 2.133 0.076
Q = 0.2 Å 0.862 −0.213 2.202 0.145

To fit the barrier height Eb(Q), 3 LEPS parameters are made
Q-dependent (D1, D2, and ∆3)
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 Fit with  = 0.6967

The barrier location Zb(Q) can be approximated with a linear
fit, ⇒ α = 0.697
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Pt(111) Eb (eV) ∆Eb (eV) Zb (Å) ∆Zb (Å)

Q = −0.2 Å 1.171 0.237 2.048 −0.156
Q = −0.1 Å 1.041 0.107 2.123 −0.081
Q = 0.0 Å 0.934 0.000 2.204 0.000
Q = 0.1 Å 0.851 −0.083 2.289 0.085
Q = 0.2 Å 0.787 −0.147 2.377 0.173

To fit the barrier height Eb(Q), 3 LEPS parameters are made
Q-dependent (D1, D2, and ∆3)
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The barrier location Zb(Q) can be approximated with a linear
fit, ⇒ α = 0.824
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• Electronic effect: The lattice puckers during the reaction
(puckering effect). The barrier becomes lower when Q

increases, enhancing the reactivity
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• Electronic effect: The lattice puckers during the reaction
(puckering effect). The barrier becomes lower when Q

increases, enhancing the reactivity

• Mechanical effect: The lattice atom recoils into the bulk
during the reaction (recoil effect). This takes energy away
from the reaction coordinate, increasing the apparent
activation barrier and lowering the reactivity
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• Electronic effect: The lattice puckers during the reaction
(puckering effect). The barrier becomes lower when Q

increases, enhancing the reactivity

• Mechanical effect: The lattice atom recoils into the bulk
during the reaction (recoil effect). This takes energy away
from the reaction coordinate, increasing the apparent
activation barrier and lowering the reactivity

• PES: V0(Z, r, θ) ⇒ V new(Q,Z−αQ, r, θ) + Vl(Q)
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• Electronic effect: The lattice puckers during the reaction
(puckering effect). The barrier becomes lower when Q

increases, enhancing the reactivity

• Mechanical effect: The lattice atom recoils into the bulk
during the reaction (recoil effect). This takes energy away
from the reaction coordinate, increasing the apparent
activation barrier and lowering the reactivity

• PES: V0(Z, r, θ) ⇒ V new(Q,Z−αQ, r, θ) + Vl(Q)

• There is a competition between the puckering effect and
the recoil effect
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To compute the reaction probabilities, we use a
time-dependent method involving a small time step propagator

• Hamiltonian,

Ĥ = Ĥ0 + V̂ = −
~
2∇2

Q

2Ms
−

~
2∇2

Z

2M
−

~
2∇2

~r

2µ
+V (Q,Z, r, θ),

where Ms = Ni mass, M = CH4 mass, and µ = CH3-H
reduced mass
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To compute the reaction probabilities, we use a
time-dependent method involving a small time step propagator

• Hamiltonian,

Ĥ = Ĥ0 + V̂ = −
~
2∇2

Q

2Ms
−

~
2∇2

Z

2M
−

~
2∇2

~r

2µ
+V (Q,Z, r, θ),

where Ms = Ni mass, M = CH4 mass, and µ = CH3-H
reduced mass

• Time-dependent Schrödinger equation,

i~
∂Ψ(t)

∂t
= ĤΨ(t) ⇒ Ψ(t) = e−i Ĥ

~
∆tΨ(0)
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To compute the reaction probabilities, we use a
time-dependent method involving a small time step propagator

• Hamiltonian,

Ĥ = Ĥ0 + V̂ = −
~
2∇2

Q

2Ms
−

~
2∇2

Z

2M
−

~
2∇2

~r

2µ
+V (Q,Z, r, θ),

where Ms = Ni mass, M = CH4 mass, and µ = CH3-H
reduced mass

• Time-dependent Schrödinger equation,

i~
∂Ψ(t)

∂t
= ĤΨ(t) ⇒ Ψ(t) = e−i Ĥ

~
∆tΨ(0)

• Second-order Split Operator Propagator (SOP),

Û(∆t) = e−i
Ĥ0

2~
∆te−i V̂

~
∆te−i

Ĥ0

2~
∆t + Ô(∆t3)
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• Initial wave function,
Ψ(0) = 1

r
√

2π
ζn0

(Q)G(Z)ξj0
v0

(r)Θm0

j0
(θ)eim0φ
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• Initial wave function,
Ψ(0) = 1
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(Q)G(Z)ξj0
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(θ)eim0φ

• FBR-DVR Formalism ⇒ Discrete transforms (Fourier,
Bessel, Gauss-Legendre)
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• Initial wave function,
Ψ(0) = 1

r
√

2π
ζn0

(Q)G(Z)ξj0
v0

(r)Θm0

j0
(θ)eim0φ

• FBR-DVR Formalism ⇒ Discrete transforms (Fourier,
Bessel, Gauss-Legendre)

• Flux-analysis to extract the reaction probabilities
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⇒ the wavepacket is localized along r and Z
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Probability density into the plane (r0Z), at t = 250∆t
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Probability density into the plane (r0Z), at t = 300∆t
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⇒ 〈Z〉 is minimum, the flux analysis can start
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• Reaction probabilities for a given n0 are computed with a
4D (Q, Z , r, θ) time-dependent wavepacket method (n0

is the initial lattice quantum number)
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• Reaction probabilities for a given n0 are computed with a
4D (Q, Z , r, θ) time-dependent wavepacket method (n0

is the initial lattice quantum number)

• Reaction probabilities for a given surface temperature
(Ts) are computed by Boltzmann averaging the previous
results over n0
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• Reaction probabilities for a given n0 are computed with a
4D (Q, Z , r, θ) time-dependent wavepacket method (n0

is the initial lattice quantum number)

• Reaction probabilities for a given surface temperature
(Ts) are computed by Boltzmann averaging the previous
results over n0

• However, energy levels spacings are very small for both
Ni(111) and Pt(111) (≈ 21 meV for Ni(111) and ≈ 11
meV for Pt(111))



Dynamics - CH 4 on Ni(111) and Pt(111)

Motivations

Theory

Electronic structure
calculations and
potential energy surface

Temperature
dependence

Dynamics

• Dynamics

• Wavepacket evolution
• Lattice response -
CH4 on Ni(111) and
Pt(111)

• Dynamics - CH4 on
Ni(111)

• Dynamics - CH4 on
Pt(111)

• Dynamics - CH4 on
Ni(111) and Pt(111)

Comparison with the
experiments

Conclusion

Methane Dissociation May 6 2009 – 34 / 41

• Reaction probabilities for a given n0 are computed with a
4D (Q, Z , r, θ) time-dependent wavepacket method (n0

is the initial lattice quantum number)

• Reaction probabilities for a given surface temperature
(Ts) are computed by Boltzmann averaging the previous
results over n0

• However, energy levels spacings are very small for both
Ni(111) and Pt(111) (≈ 21 meV for Ni(111) and ≈ 11
meV for Pt(111))

⇒ Many n0 states are required to converge the Boltzmann
distribution (≈ 20 states for Ni(111) and ≈ 50 states for
Pt(111))
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- S. Nave and B. Jackson, J. Chem. Phys. 127, 224702 (2007)
- S. Nave and B. Jackson, J. Chem. Phys. 130, 054701 (2009)
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• Results for Ni(111) and Pt(111) published in:

- S. Nave and B. Jackson, Phys. Rev. Lett. 98, 173003 (2007)
- S. Nave and B. Jackson, J. Chem. Phys. 127, 224702 (2007)
- S. Nave and B. Jackson, J. Chem. Phys. 130, 054701 (2009)

• Lack of reactivity for CH4 on Pt(111)

• Extend this method to the Ni(100), Pt(100), and
Pt(110)-(1×2) surfaces

• Treat Z and Q classically to save some computing time

• Additional DFT calculations might be needed, in
particular to characterize the Q-dependence
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