

GDR Arches

Lalonde, May 7, 2009

Correlation between electro-chemical and chemical impedance spectroscopies for analyzing the hydriding kinetics of palladium foils

NGAMENI JIEMBOU Joseph Rostand

Sous la direction de: Pierre MILLET

ICMMO, faculté d'Orsay

Hydrogen sorption by metals

Electro-chemical (alkaline media) M+xH₂O+xē ⇔ MH_x+xOH

Thermodynamics

Thermodynamics of metal-H₂ systems

Palladium massif

Methodologies

Harmonic analysis

linear systems and reversible transformations

Non-harmonic analysis

SLIT

Experimental section

H₂, Ar RE (SCE) WE CE AE H2O ≯ 闼

F

11 1 1

non-harmonic PIS

$$Z(\omega) = \frac{TF[P(t)]}{TF[dn/dt(t)]}$$

UNIVERSI

PARIS-SUD 11

TΕ

<u>H insertion mechanisms</u>

Chemical insertion of H₂

<u>(mechanism)</u>

Gas phase

physisorption $H_2(g) < \longrightarrow > H_2^{surface}$

Surface diffusion

Phase Transformation

Comparison of insertion mechanism

<u>Models for insertion in</u> <u>single-phase domains</u>

Electrical model insertion of H₂

NHEIS in single-phase domains

electrochemical impedance diagrams measured on Pd-H at 298 K at E = +160 mV NHE.

- (o) experimental harmonic;
- (+) experimental non-harmonic with :
- (f) Dt = 50 ms; (b) Dt = 25 ms;
- (c) Dt = 2.5 ms; (–) model impedance

electrochemical impedance diagrams measured on Pd-H at 298 K at E = +60 mV NHE.

- (o) experimental harmonic;
- (+) experimental non-harmonic with :
- (f) Dt = 50 ms; (b) Dt = 25 ms;
- (c) Dt = 2.5 ms; (–) model impedance

Comparaison of rate parameters (298 K)

Conclusion and perspectives

Because of hysteresis, harmonic spectroscopies cannot be used to analyze the hydriding kinetics of metals and intermetallic compounds

Experimental electrochemical impedance diagrams have been obtained on Pd using potential steps

Experimental chemical impedance diagrams have been obtained on Pd using PIS analysis

Main kinetic differences between electrochemical and chemical processes have been determined quantitatively

➢ We are currently investigating the phase-transformation process in twophase domains using EIS and PIS

➢ We are also thinking about hyper-permeation from low-temperature plasma experiments

Thank you for your attention

