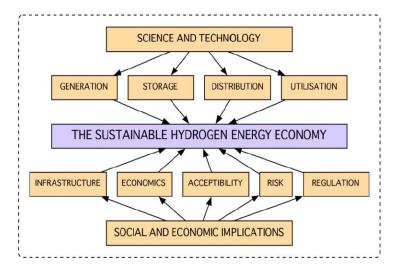
"Insights" from simulation on the electronic and thermodynamic properties of novel light-metal amidoboranes

<u>B. Kerkeni</u>, S. A. Shevlin & Z. X. Guo

Department of Chemistry University College London Gower St London WC1E 6BT United Kingdom



Contents

- 1: Hydrogen as a clean fuel and storage issues
- 2: Simulation methodology
- 3: Ammonia borane
- 4: Metal amidoboranes (Li, Na, Mg)
- 5: Conclusions

1: Hydrogen as a fuel

- UK is seeking international commitment to cut emissions of CO₂ by 20% by 2020
- In order to achieve this, need to switch from fossil to "clean" fuels
 - Especially for vehicular applications
- Hydrogen, with a high energy density of 119 MJ/Kg, is the favourite replacement
- Prime issue for hydrogen applications are:
 - Storage (safe and efficient)

THE SUPERGEN INITIATIVE

1: Storage requirements

- Target for hydrogen storage systems is to allow vehicles to drive 480 km range
 - This requires storing 5.6 kg H₂
 - 2 kWh/kg H₂ storage (6 wt.%)
- Other targets are:
 - Compactness
 - Low cost
 - Near room temperature operation
 - Allow easy refuelling and safe operation
- Thus favoured solution is storage in solid systems (R&D in the use of novel condensed-phase hydride materials)
- However, currently no material meets all these requirements

2: Simulation & Hydrogen storage

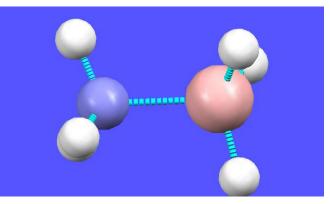
- How can simulation aid research into hydrogen storage materials?
 - Determine H₂ binding energies
 - Determine activation barriers for H₂ release
- A quantity of interest is the electronic binding energy of H₂ to the substrate
- This is defined as:

$$\mathsf{E}_{\mathsf{Bind}}(\mathsf{H}_2) = \mathsf{E}_{\mathsf{Tot}}(\mathsf{X}) + \mathsf{E}_{\mathsf{Tot}}(\mathsf{H}_2) - \mathsf{E}_{\mathsf{Tot}}(\mathsf{X} + \mathsf{H}_2)$$

 $E_{Tot}(X+H_2)$ is energy of the total system $E_{Tot}(X)$ is energy of system after H_2 removed $E_{Tot}(H_2)$ is energy of isolated H_2

- The more positive E_{bind} , the more strongly H_2 bound
- For practical applications, want E_{bind} between 0.2 and 0.7 eV/H₂

2: Methodology


- We performed density functional theory simulations using VASP
- A plane wave basis set is used, with a cutoff of 450 eV
- Γ-point sampling is sufficient for both systems used
- PAW used to treat core electrons, with the PBE xc-functional
- Climbing Nudged Elastic Band method used for barrier calculation, with transition state structures re-relaxed with the dimer method
- To check results, we performed PBE and B3LYP calculations using GAUSSIAN03 with the 6-311G++(d,p) basis set

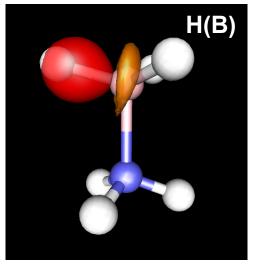
Both PBE calcs give similar results to within 1/100 eV

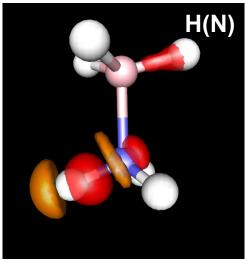
3: Ammonia borane (NH₃BH₃)

- Prototype system: ammonia borane (AB, NH₃BH₃), as it has a large hydrogen storage capacity of 19.6 w %
- Unfortunately, by itself it does not meet targets
 - it is too **unstable** w.r.t. dehydrogenation
 - Has got side products

	E _{Bind}	E _{Bind} + ZPE	ΔG(R.T)	ХС
	0.075	-0.227	-0.532	PBE
NH ₃ BH ₃	-0.100	-0.418	-0.701	B3LYP

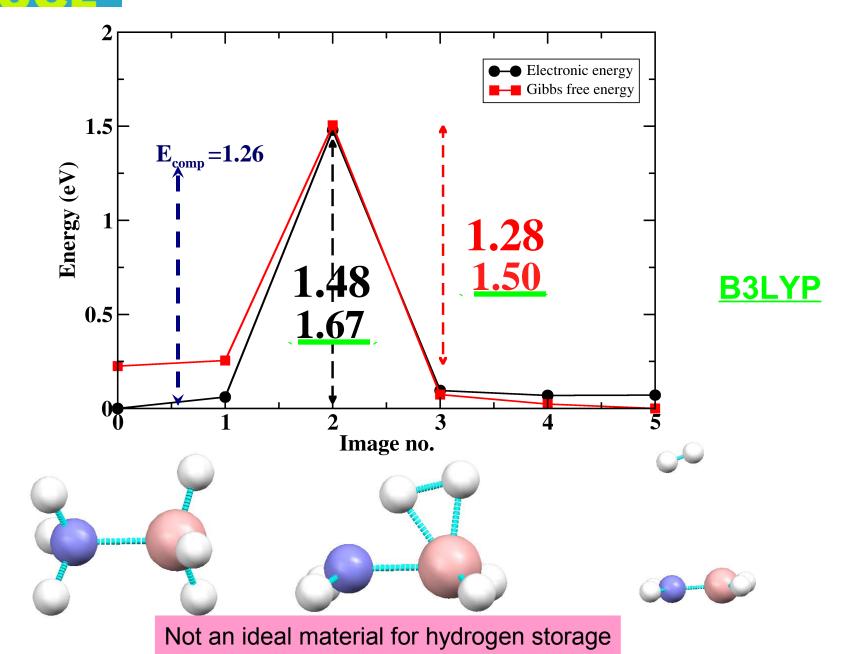
B N N H $H_{3}BH_{3} \rightarrow NH_{2}BH_{2} + H_{2}$

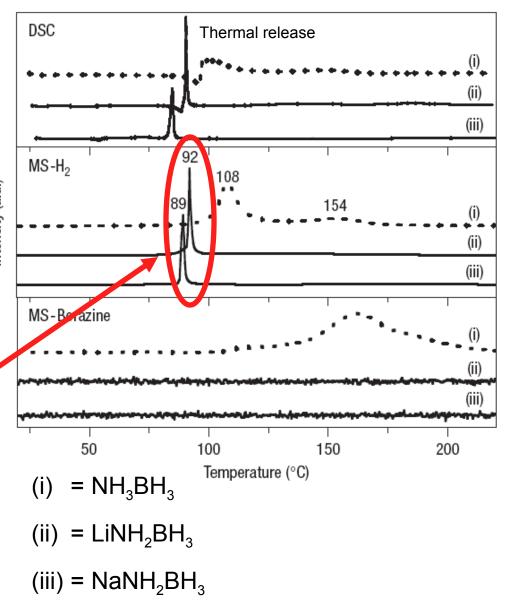

Unstability?


3: Binding of hydrogen

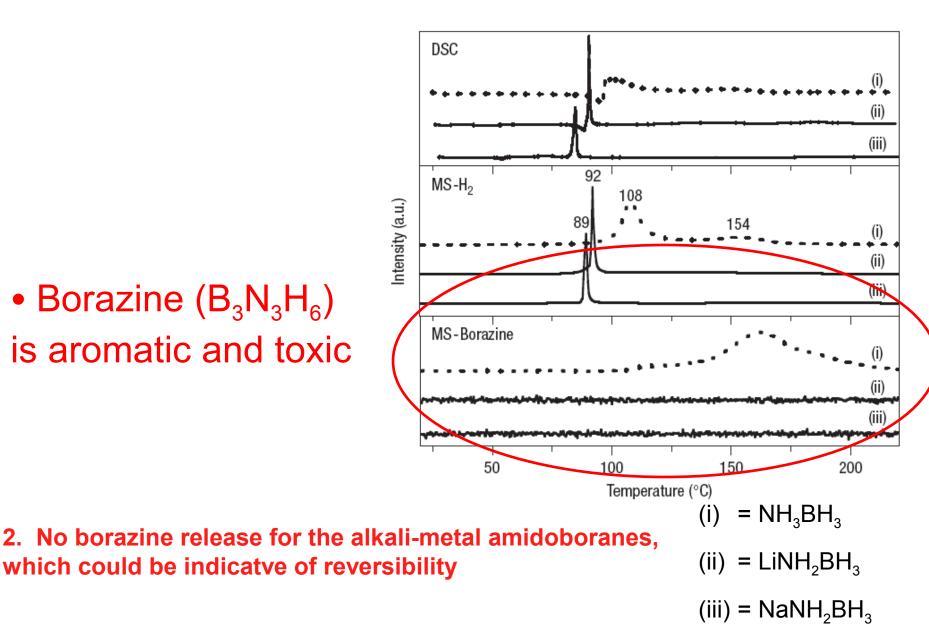
 We look at the binding of H atoms to AB, via calculation of the charge density difference

 $CDD = \rho(NH_3BH_3) - \rho(NH_2BH_3) - \rho(H)$

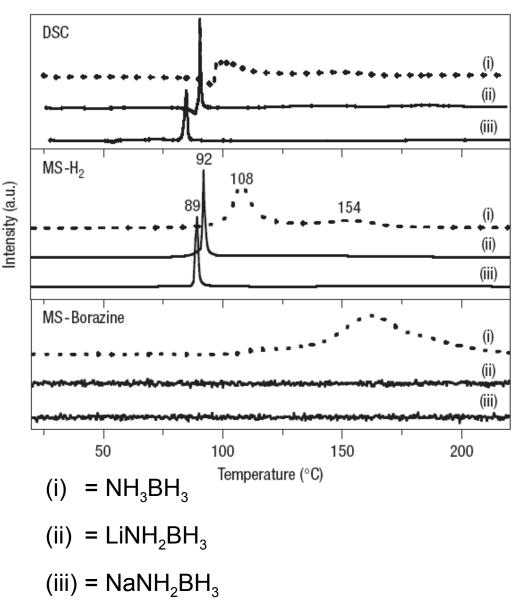

- The H atom that is bound to the B atom [H(B)] withdraws electron density from the bond
- We can therefore consider it negatively charged
- In contrast, H(N) positively charged
- The molecule as a whole is thermodynamically destabilised against neutral H₂ release


So why does AB exist at room T?

3: H₂ dissociation barrier (NH₃BH₃)


4: Metal-doped amidoboranes

- A recent experiment ^[1] found H₂ release from the interaction of Group I hydrides (LiH, Na) with AB
 - $\text{LiH} + \text{NH}_3\text{BH}_3 \rightarrow \text{LiNH}_2\text{BH}_3$ + H_2
 - + H_2 = LiNH₂BH₃ → LiNHBH₂ + H_2 (New H-storage material!)
- These new materials have significantly improved hydrogen storage properties
- H₂ release at lower temperatures


[1] Z. Xiong et al., Nature Materials 7, 138, (2008)

4: Metal-doped amidoboranes

4: Metal-doped amidoboranes

- A recent experiment ^[1] found H₂ release from the interaction of Group I hydrides (LiH, NaH) with AB
 - $\text{LiH} + \text{NH}_3\text{BH}_3 \rightarrow \text{LiNH}_2\text{BH}_3$ + H_2
 - $\text{LiNH}_2\text{BH}_3 \rightarrow \text{LiNHBH}_2 + \text{H}_2$ (New H-storage material!)
- These new materials have significantly improved hydrogen storage properties
- What are their structural, electronic, and thermodynamic properties?

[1] Z. Xiong et al., Nature Materials 7, 138, (2008)

4: Molecular properties

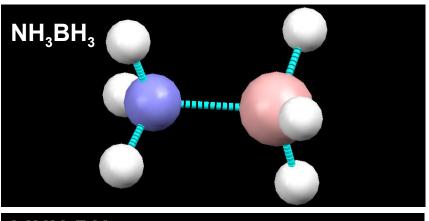
- In order to understand these reactions, we first need to consider gas-phase properties
- We calculate structure, energetics, and electronic properties of the following molecules:
 - LiNH₂BH₃
 - NaNH₂BH₃
 - NH₃BH₃
 - MgHNH₂BH₃ (Mg needs to be twofold coordinated)
- Note, in order to include finite temperature effects we calculate the full Gibbs free energy:

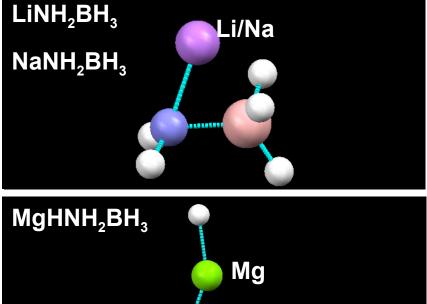
$$\begin{split} G(T) = E_0 + U(T) - TS(T) \\ G(T) = E_0 + E_{ZPE} + U_{vib}(T) - T(S_{vib}(T) + S_{rot}(T) + S_{trans}(T)) \\ G(T) \sim E_0 + E_{ZPE} + U_{vib}(T) - TS_{vib}(T) \end{split}$$

4: Structure, energetics

It was proposed that the metal atom replaces a H atom on the N-moiety

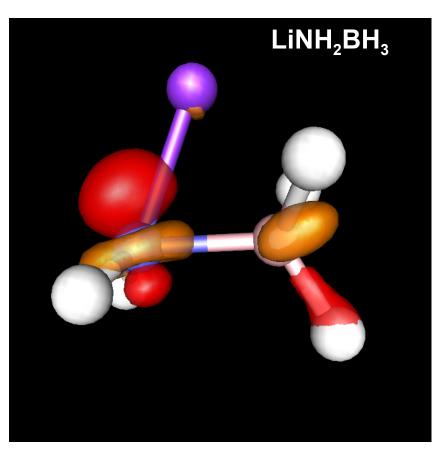
 This binding is energetically preferred w.r.t. bulk hydride (chosen as reference)

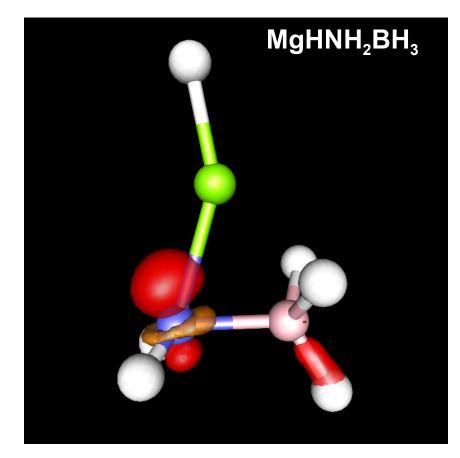

 $E_{bind}(Li) = 0.85 \text{ eV/atom}$

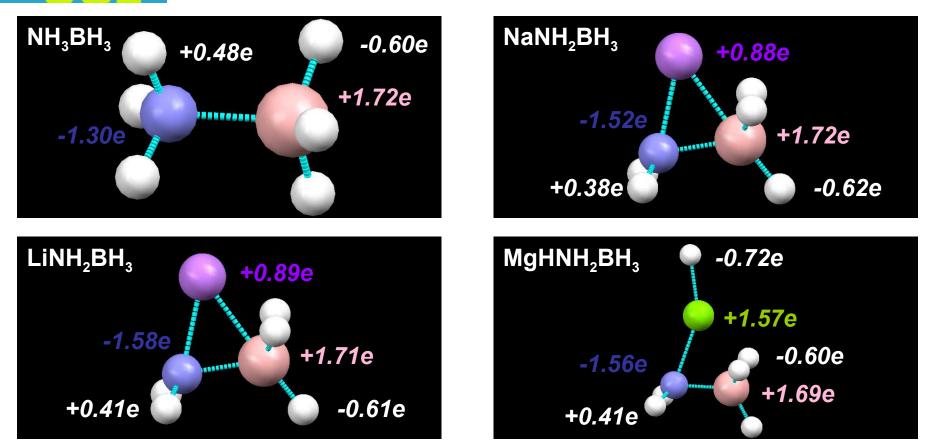

 $E_{bind}(Na) = 0.42 \text{ eV/atom}$

 E_{bind} (MgH) = 0.43 eV/atom

All structures are stable


The Li, Na, and MgH pair all "bridge" the BN bond, with metal-N distance ~0.1 Å smaller than metal-B distance




4: CDD analysis

- Charge density difference for the Li/MgH component can reveal nature of binding (**red** is electron accumulation, **orange** is electron depletion)
- We see that there is a **strong accumulation** of density on the N atom due to donation from Li/Na or MgH: **the bond is truly formed with N**

4: Bader charge analysis

H(N) is positively charged and H(B) is negatively charged (Mulliken analysis agrees)

 Addition of Group I and II metal atoms increases the charging of N, but decreases the charging on H(N) atoms. We expect stronger H binding

 Note: The (NH_a)⁺(BH_a)⁻ complex becomes more ionic with addition of I/II atom Stronger dipole than AB, more stable amidoborane complex?

4: Complexation energy

- (NH₂X)+(BH₃)- complex becomes more ionic upon H substitution
- How does this affect energy of complexation?

E	$E_{\text{Comp}} = E_{\text{Tot}}(\text{NH}_2\text{X}) + E_{\text{Tot}}(\text{BH}_3) - E_{\text{Tot}}(\text{NH}_2\text{XBH}_3)$					
		E _{Comp} + ZPE (eV)				
	$NH_{3}BH_{3}$	1.26				
	LiNH ₂ BH ₃	2.69	ר			
	NaNH ₂ BH ₃	2.71	┝			
	MgHNH ₂ BH ₃	2.28	J			

More strongly bound compounds

- Why is this important? For bare AB, E_{Comp} is less than activation barrier (1.48) for H₂ release
 - Ammonia borane will disintegrate, not a reversible hydrogen store
- Is this true for metal amidoboranes? And what is E_{Bind}?

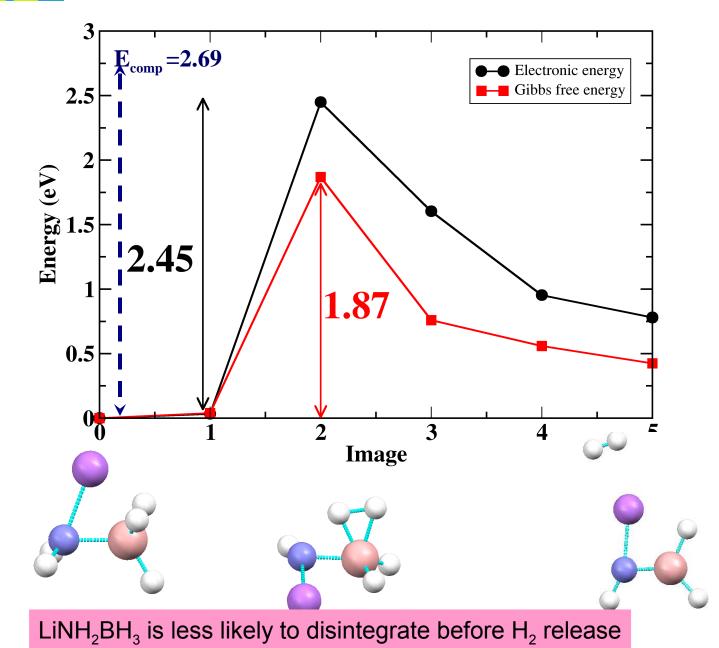
4: Thermodynamics of H₂ release

System	$E_{bind}(E_{0})$	$E_{bind}(E_{0,ZPE})$	G(T=300)	H(T=300)
NH ₃ BH ₃	0.08 eV	-0.23 eV	-0.53 eV	-0.15 eV
LiNH ₂ BH ₃	0.91 eV	0.61 eV	0.30 eV	0.75 eV
NaNH ₂ BH ₃	0.96 eV	0.66 eV	0.35 eV	0.74 eV
MgHNH ₂ BH ₃	0.86 eV	0.53 eV	0.22 eV	0.62 eV

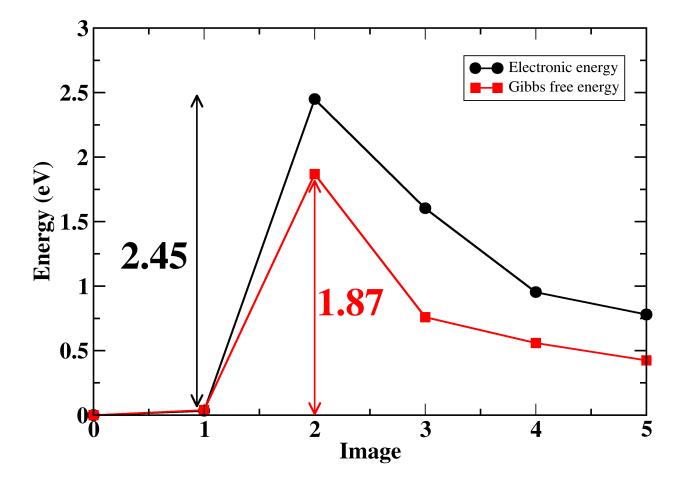
Similar ZPEs, the trend remains the same for the free energies

•Dehydrogenation of NH_3BH_3 is exothermic at room temperature, others are endothermic

■All amidoboranes are more stable w.r.t. dehydrogenation than NH₃BH₃

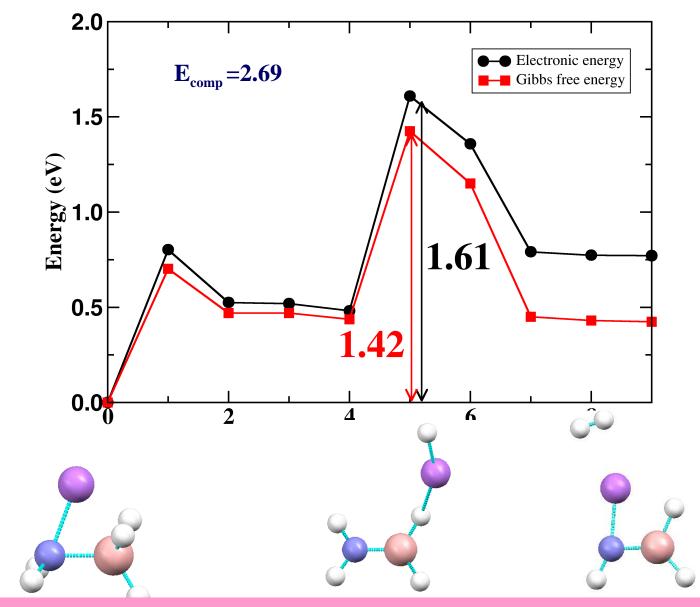

This is contrary to experiment

Regarding functionals, B3LYP underbinds w.r.t. electronic binding energies and enthalpies, but no clear trend for free energies.

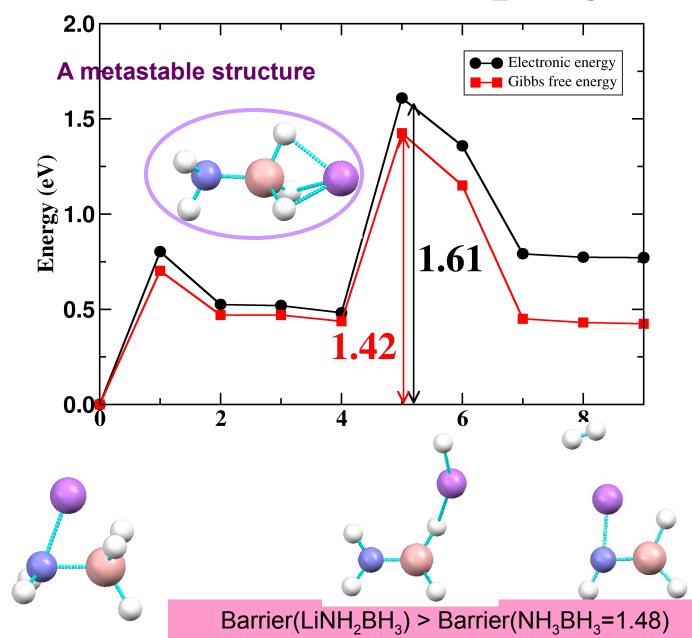

•MgHNH₂BH₃ is most unstable amidoborane at RT, Addition of MgH is best for releasing H₂ at or near room temperature

Same kind of fragmentation as seems likely for AB?

4: Activation barrier (LiNH₂BH₃)



4: Activation barrier (LiNH₂BH₃)


Interesting but this is not minimum energy pathway!

4: MEP of LiNH₂BH₃

The molecule backbone is stable and the reaction more likely to be reversible

4: MEP of LiNH₂BH₃

4: Li is a carrier!

A metastable structure

• Moves from one end of LiNH₂BH₃ to the other

• Then moves back picking up a H

N

 Rotates around bond placing H atoms together, and facilitating H₂ release

Hydrogen removal energy and the reaction barrier are > than AB

5: Conclusions

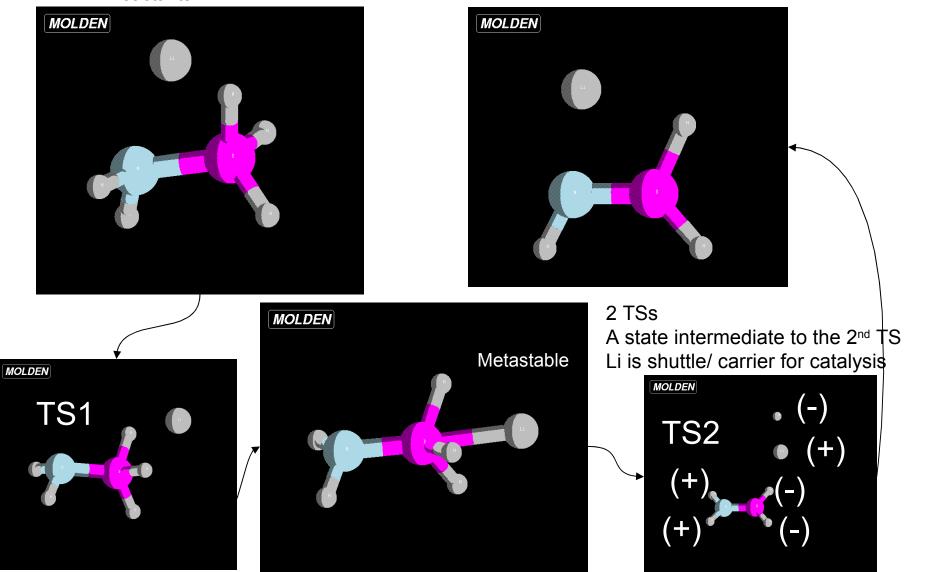
- Metal-coordinated amido-boranes are stable w.r.t. segregation to hydrides
- Metal atoms dump electron density into N atom, this acts to increase hydrogen binding, with concomitant modification of the chemical bonding between B and N
 - Consistent picture regardless of exchange-correlation functional used
- Pure AB will fragment, as complexation energy less than activation barrier for H₂ release
- This is not the case for LiNH₂BH₃ (and others)
 - This bodes well for potential reversibility

5: Conclusions

- Pure AB is unstable against dehydrogenation, but metal amidoboranes are not
- A cause for concern? Our calculated thermodynamics and activation barriers do not match experimental picture
 - Is this due to other reactions that occur in complexes?
 - Picture is more complicated than assumed
- These molecules can act as H-storage media, the low-T release of a large amount of hydrogen is significant and provides the potential to fulfil many of the principal criteria required for an on-board hydrogen store. MgHNH₂BH₃ has the best thermodynamics.

Acknowledgements

- EPSRC
 - UK-SHEC (GR/S26965/01, EP/E040071/1)
 - PLATFORM (GR/S52636/01, EP/E046193/1))
 - Grants for funding and access to HPCx and HECToR national computing facilities
- GDR organisers
- The audience for paying attention!!!


Email: b.kerkeni@ucl.ac.uk

Li NH_2BH_3 : new

Reactants

