

Plasma wall interactions in ITER and the deuterium tritium inventory problem

A. Grosman, E. Tsitrone, C. Brosset, B. Pégourié, E. Gauthier, J. Bouvet, J. Bucalossi, S. Carpentier, Y. Corre, E. Delchambre, L. Desgranges, D. Douai, A. Ekedahl, A. Escarguel, Ph. Ghendrih, C. Grisolia, J. Gunn, S.H. Hong, W. Jacob, F. Kazarian, M. Kocan, H. Khodja, F. Linez, T. Loarer, Y. Marandet, A. Martinez, M. Mayer, O. Meyer, P. Monier Garbet, P. Moreau, J. Y. Pascal, B. Pasquet, F. Rimini, H. Roche, I. Roure, S. Rosanvallon, P. Roubin, J. Roth, F. Saint-Laurent, F. Samaille, S. Vartanian

CEA (IRFM, DEN, LPS), University of Provence (PIIM), IPP Garching (EU PWI TF)

Introduction to fusion and plasma wall interactions in ITER

Fusion

Need to control plasma content, He content, fuel recycling

P_{inj} = 0 – ITER Goal

Q = 10

 $\mathbf{P}_{alpha} \ge \mathbf{P}_{inj}$

Parallel heat fluxes up to 1GW/m²!!! Glancing incidences needed : technology

Image: Internation of the second s

A. Grosman

ir fm

Association Euratom-CEA

Paramètre	ITER				
Grand rayon (m)	6,2		521		
Petit rayon (m)	2		1117		
Élongation verticale	1,7 / 1,85				
Volume plasma (m³)	837				
Champ magnétique (T)	5,3				
Courant plasma (MA)	15			-	
Puissance fusion (MW)	500				
Flux de neutrons (MW/m ²)	0,5				
Facteur d'amplification	10				
(Q)	(ignition possible)				
900 800 17.	4 MA 15.1 MA				
300 Hep/Hthr=7.3		Engineering	Building	Operation	
	- 199	0	2006 20	18	20
A. Grosman GDR Arches, Hyères May 5th 2009					12

Challenges for ITER

First wall : Be (700 m²)

moderate heat flux

low Z, oxygen getter : control of impurity content

 \Rightarrow plasma performance

Divertor baffles + dome : W (100 m²) medium heat flux

high erosion threshold \Rightarrow life time + T retention

Divertor targets : Carbon Fiber Composite (50 m²) high heat flux

Excellent thermo-mechanical properties, low Z

 \Rightarrow heat flux handling in divertor

Main PWI issues for ITER :

• Plasma Facing Components lifetime : steady state → radiation cooling (impurity seeding) ELMs and disruption → mitigation

- Fuel retention (T inventory)
- Dust production

Fuel retention : a major issue for ITER PFCs

•C/W/Be : 300-1000 discharges before T limit

Main mechanism :

codeposition of T with eroded carbon

Large uncertainties :

•Wall power and particle fluxes (3D PFCs, gaps)
•Material migration (erosion, transport, redeposition)
•local Tsurf

Tore Supra :

• Actively cooled carbon PFCs with unique long pulse capability :

Fuel retention with relevant pulse duration + steady state PFCs Tsurf

Deuterium inventory in Tore Supra : reconciling particle balance and post mortem analysis

Outline :

- Fuel retention : open questions
 Deuterium Inventory in Tore Supra (DITS)
- Experimental campaign → particle balance
- Sample extraction
- Post mortem analysis
 Comparison with particle

balanceSummary

Fuel retention Open questions

Previous studies : factor ~ 10 [C. Brosset et al., JNM 337-339, 2005]

Deuterium Inventory in Tore Supra (DITS) :

experimental campaign / dismantling of PFCs / analysis phase

The DITS project Experimental campaign

Inside Tore Supra (2002)

cadarache

Physics and technology for steady state operation

Everything is actively cooled (same as ITER)

New record: 6 min 18 s, 1.07 GJ

A. Grosman

Experimental campaign

cadarache

Aim → load the vessel walls with D

- Repetitive long pulses (2 minutes) on robust scenario :
 Ip = 0.6 MA, ne/n_{GR} ~0.5 , 2 MW LH
- 5 hours of plasma w/o conditionning (1 year of operation in 2 weeks)
- ➔ pre-campaign D inventory x 4

[B. Pégourié et al., PSI 2008, to be published in JNM]

Particle balance :

- No wall saturation
- Release after shot ~ 2 minutes
- Long term release ~ 10% of total exhaust
- → ~ 50 % of injected gas trapped

→Post mortem analysis : ~ 10 g (3 10²⁴ D)

A. Grosman

Magnetic configuration on the limiter

TPL temperature pattern (IR imaging)

1100

1000

900

800

700

500

400

300

200

cadarache

Cooling loop = 120°C Active cooling : Tsurf = cte

[A. Ekedahl, P. Moreau]

The DITS project Sample extraction

First analysis campaign : 10 tiles (40 extracted)

- 5 in erosion zone
- 2 in thin deposits (far SOL and shadowed)
- 3 in thick deposits

The DITS project Post mortem analysis

Consistency NRA / TDS except for thick deposits :
 → Gaps significant D content over NRA range (deposited layers > 30 µm)
 → Bulk

D inventory in gaps

• D content in gaps : significant for erosion/thick deposits, low for thin deposits no major difference poloidal vs toroidal

A. Grosman

For mortem D inventory : 4.9 ± 1.1 g D → ~ 50 % of particle balance
→ significant progress (10% in previous studies (thick deposits))

• Lower limit : loss of D with air exposure (~ 6 months), other PFCs (inner bumpers)

UFOs on CCD imaging of the TPL

cadarache

Critical phases for UFOs

Critical phases :

- Plasma start up
- Additional power start

Then sporadic along the shot

UFOs and MARFE

SUPRA

A. Grosman

MARFE and detachment

A. Grosman

MARFE and disruption ...

A. Grosman

Summary

- **Fuel retention major issue for ITER** Studies in Tore Supra :
 - codeposition vs bulk diffusion
 - particle balance vs post mortem
- **Dedicated campaign :** repetitive long pulses (5 h w/o conditionning)
 - max limiter fluence ~ 1 ITER shot at strike point (few 10²⁶ D/m²)
 - particle balance
 → 10 g of D

Retention mechanisms : codeposition dominant

- **Erosion** Significant gap contribution
- **zone Bulk** diffusion (codeposition in porosities ?)

Post mortem D inventory ~ 50 % particle balance ~ 5 g of D in limiter (± 20 %) → lower limit (D loss, other PFCs)

→ Towards reliable in vessel fuel inventory : Particle balance : how much / when ? ← Scenario optimization Post mortem : how much / where ? ← Detritiation

Prospects

cadarache

•Now, the « consensus » is on preventing the use of C in nuclear phase of ITER operation

•However, better knowledge may somewhat alleviate the problem

•Questions to the academic (fundamental) community

•Networking through the European Task Force on Plasma Wall Interactions (EFDA) and, in France, the FR-FCM (Fédération de Recherches en Fusion par Confinement Magnétique)

Annex

```
rfm
```

D-inventory : effect of time

Decrease of the D-content between end of operation and analysis

Estimated TPL D-inventory at the end of plasma operation~7.6 g if CFC and deposits concerned(75 % of total)~5.1 g if only CFC concerned(50 % of total)

Other PFCs cleaning

Inner bumpers, outboard limiter, antennas guard limiters : 645 g of dust

Total exhausted ~ 0.6g D

Global **∆WI** ~ 10g D (3.0×10²⁴ atoms)

• ≠ standard and ** samples : gap contribution

- Gaps significantly contribute (*≠* standard and **** samples)
- From ** samples : x 50 lower for erosion, 500 lower for thin-thick deposits / top
- ➔ bulk tile < 1 % of inventory in top samples from ** samples</p>

Gap deposits on the TPL

Thin deposits (far shadowed)

No gap deposit visible

A. Grosman

51

── NRA : non uniform D concentration

On 1 sample :

low energy (800 keV) : std deviation 10-20 % for all zones (erosion, thin, thick deposits)
higher energy (4-6 MeV) : std deviation 30-50 % (but on lower D concentration)

On samples from the same zone :

 factor 2 (erosion) to 4 (thick deposits) on top samples

→ Non uniform D concentration, specially deep in the material
 Could be linked to the porosity network in CFC
 → Statistics needed to assess integrated inventory from NRA

Z=10 µm

Z=0 µm

MicroNRA : deuterium mapping

Using sophisticated analysis tools

MicroNRA : deuterium massing Amorphous layer Z=0 µm of 3.5 µm CFC matrix Homogeneous in redeposited layer-Шm 10^{2} $\blacktriangle - \phi = 1.0 \times 10^{25} \text{ D.m}^{-25}$ ~ 3.7 μm $\bullet = 4.7 \times 10^{24} \text{ D.m}^{-2}$ - $\phi = 1.4 \times 10^{24} \text{ D.m}^{-2}$ $-\phi = 3.1 \times 10^{22} \text{ D.m}^{-2}$ 10 - • ~ 10²⁰ D.m⁻² D concentration [at.%] 10⁰ 10 Localised in the bulk CFC : Trapping sites = porosity along fibers 10⁻² Z=10 µm In TS : codep into CFC open pores..? Depth [µ m]

irfm

Association

Euratom-CEA

Preliminary SIMS results

¹³C + ¹¹B markers visible (start of DITS campaign) Quantitative analysis difficult (erosion speed)

Tore Supra : equipped for particle balance

Association Euratom-CEA

Exhaust system : TMP

irfm

- TPL pumping 20 gauges
- Vessel Pumping : 2 gauges
- LH pumping : small conductance
- TMP backed by 2 roots pumps,
 2 gauges

Consistency checks :

- Calibration on gas injection
- TPL and roots : consistency check
- Pulse w and w/o active pumping

Adapted plasma operation

• Long pulse steady state for PWI (cst outgassing)

Particle balance : robust tool on TS

Retention mechanisms :

• Codeposition dominant (shadowed + gaps), 10 % bulk diffusion in erosion

Post mortem : 4.9 \pm 1.1 g D \rightarrow ~ 50 % of particle balance

→ significant progress (10% in previous studies (thick deposits))

• Lower limit : loss of D with air exposure (6 months), other PFCs (inner bumpers)