Sticking and Recombination of spinpolarised Hydrogen Atoms

Complements to this story can be found on the "hydrogen" page of www.aecono.com

"Sticking"					
_τ = 10 ⁻¹³ exp ε/kT _s (sec)					
ε/k		T _s			
	3	4	5	10	
40	6.17E-08	2.20E-09	2.98E-10	5.46E-12	
60	4.85E-05	3.27E-07	1.63E-08	4.03E-11	
80	3.81E-02	4.85E-05	8.89E-07	2.98E-10	
100	3.00E+01	7.20E-03	4.85E-05	2.20E-09	
120	2.35E+04	1.07E+00	2.65E-03	1.63E-08	
140	1.85E+07	1.59E+02	1.45E-01	1.20E-07	
160	1.45E+10	2.35E+04	7.90E+00	8.89E-07	
180	1.14E+13	3.49E+06	4.31E+02	6.57E-06	
200	8.97E+15	5.18E+08	2.35E+04	4.85E-05	
240	5.54E+21	1.14E+13	7.02E+07	2.65E-03	
300	2.69E+30	3.73E+19	1.14E+13	1.07E+00	
400	8.05E+44	2.69E+30	5.54E+21	2.35E+04	
500	2.41E+59	1.94E+41	2.69E+30	5.18E+08	
600	7.23E+73	1.39E+52	1.30E+39	1.14E+13	

Binding Energies

Reference			Bolometer
expts 5	36	H/H ₂	
6	42	H/D ₂	
5 + 6	44	H/D ₂	50±15
7	400±50	H/H ₂ O	320±70
8	250 to 800	H/(H ₂ O) ₁₁₅	
	most prob. 550		

(5) Crampton et al. Phys. Rev.B 1982 (exp.)
(6) Pierre et al. JCP 1985
(7) Al-Halabi et al. J.Phys.Chem.B 2002
(8) Buch & Zhang, Astrophys. J. 1991

See link on www.aecono.com

Coverage by molecular hydrogen increases S but decreases β

 D_2 coverage, from initial 3 x 10¹⁵ cm⁻²:

(1) 9 x 10¹⁴ cm⁻²

- (2) 1.9 x 10¹⁴ cm⁻²
- (3) 1.6 x 10¹⁴ cm⁻²
- (4) 4.5 x 10¹³ cm⁻²

Recombination efficiency Sβ is a compromise

On ice saturated with molecular hydrogen, S \approx 1 (soft landing) but $\beta \approx 0$ (no time to find partner)

On "bare" non-porous ice, S \approx 0 (ping pong) but $\beta \approx$ 1 (every atom that sticks will remain long enough to find a partner)

Optimum S \approx 0.8 $\beta \approx$ 0.3 occurs at *molecular* coverage of about 2 x 10¹⁴ cm⁻², where ϵ varies strongly

On non-porous ice, recombination looks something like this

What about electronic Spin ?

Is it reasonable to expect every hydrogen atom to recombine once it sticks on the surface ?

Or should we consider that β cannot exceed $\frac{1}{4}$ on non-porous ice, since the physisorbed H appears to be skating freely on the surface, much as if it were a two-dimensional gas ? I.e. should we expect only $\frac{1}{4}$ of the atoms to interact in the binding singlet potential ?

Stern-Gerlach Experiment

Energy released by H recombination depends critically on H₂ coverage

Do we get same dependence with a polarised H beam ?

I.e. the H2 coverage dependence will serve as a signature for H recombination

Do we get same dependence with a polarised H beam ?

AECONO CONSULTING

Do we get same dependence with a polarised H beam ?

AECONO CONSULTING

Conclusions and questions

- This Stern Gerlach experiment does not show a signicant effect of electron spin polarisation
- But could it conceptually have done so ?
- The experimental set-up does offer the possibility to produce 100% pure H beams with some velocity selection

Example : probing H2 evaporation with a pure H beam

Example : probing H₂ evaporation with a pure H beam

Example : probing H2 evaporation with a pure H beam

We can now evaluate the binding energy of the evaporated H₂ layer :

140 = 10⁻¹² x e^{ε/kTs} yields ε/k = 112 +/- 2 K 140 = 10⁻¹³ x e^{ε/kTs} yields ε/k = 120 +/- 2 K

NB Sublimation energy of solid H₂ is 90 K

Other conclusion :

When there is no molecular hydrogen on the surface, the polarised H beam does not show any recombination signal at all. So....????

