

The role of negative ions on the density of excited hydrogen atoms in a hydrogen plasma jet

Willem-Jan van Harskamp, Onno Gabriel, Daan Schram, Richard van de Sanden, <u>Richard Engeln</u>

> Technische Universiteit **Eindhoven** University of Technology

GDR Arches, May 4 – 7, 2009, Agelonde

Where innovation starts

TU

Hydrogen containing plasma

http://www.iter.org/divertor.htm

H/H₂ in thin film deposition of polycrystalline/amorphous silicon

Divertor region of a fusion reactor

- Cool enough for H₂ to survive long enough; loss of dissociation and ionization processes.
- H₂^{rv} can reduce the ion flux due to molecular assisted recombinations (MAR)
- Hydrogen surface association on carbon surfaces?

Why study expanding hydrogen plasma? (produced from a cascaded arc)

1. Use of H₂ gas in processing plasma application

- etching and cleaning
- passivation during deposition

2. Astrophysical interest

- 'hot' H_{2} , formed at grains through surface association, and acts as precursor in astro-chemistry

3. Fundamental study of H₂/HD/D₂ Lyman transitions

- extension of database
- The cascaded arc might be used as H⁻ ion source, because of high fluxes of H₂^{r,v}

Plasma source and expansion

TUe Technische Universiteit Eindhoven University of Technology

/ Plasma & Materials Processing

Plasma expansion

PLEXIS setup

Laser table Nd: YAG (450 mJ/shot @ 355 nm) dye laser (50 mJ/shot @ 460 nm) Vacuum chamber cylindrical (2m x 0.3m) 7 Pa / 2000 sccm H₂

- Movable plasma source and substrate
- Axial magnetic field
 B_{max} = 0.2 T

Measurements performed on ETP (H₂/D₂)

1. Two-photon absorption LIF (TALIF)

- H-atom densities, velocities and temperatures (z,r)
- 2. VUV-LIF
 - $H_2^{r,v}$, $D_2^{r,v}$, HD^{r,v} Lyman spectra (z)
 - (non-) Boltzmann density distributions

3. Optical emission spectroscopy

- H(n), D(n) absolute density (z)

VUV-LIF detection of H₂^{r,v}

SARS technique

M. Spaan, A. Goehlich, V. Schultz-von der Gathen, H. F. Döbele, Applied Optics 33 (1994) 3865

- T. Mosbach, H. M. Katsch, H. F. Döbele, Rev. Sci. Instrum. 85 (2000) 3420
- P. Vankan, S.B.S. Heil, S. Mazouffre, R. Engeln and D.C. Schram, H. F. Döbele, Rev. Sci. Instrum. 75 (2004) 996

/ Plasma & Materials Processing

VUV-LIF setup

TU/e Technische Universiteit Eindhoven University of Technology

Measured H₂ Lyman spectrum

VUV LIF setup

13-5-2009 PAGE 11

VUV LIF setup

/ Plasma & Materials Processing

13-5-2009 PAGE 12

VUV LIF setup

13-5-2009 PAGE 13

Measured H₂ Lyman spectrum

TU/e Technische Universiteit Eindhoven University of Technology

Measured H₂ Lyman spectrum

Measured H₂/HD/D₂ Lyman spectra

Technische Universiteit

University of Technology

13-5-2009

PAGE 16

O. Gabriel et al. Chemical Physics Letters 451 (2008) 204

/ Plasma & Materials Processing

Measured and calculated Lyman spectra

H. Abgrall et al. Astron. Astrophys. Suppl. Ser. 101 (1993) 273

All H₂ Lyman transitions

H. Abgrall, E. Roueff, Astron. Astrophys. 445 (2006) 361

HD Lyman transitions J < 11

Spectroscopic data for D₂

H. Abgrall et al. J. Phys. B: At., Mol. Opt. Phys. 32 (1999) 3813

D_2 Lyman transitions J < 12

nische Universiteit niversity of Technology

Measured and calculated Lyman spectra

New calculated Lyman transitions including higher rotational states (J > 10), Abgrall/Roueff, private communication

O. Gabriel et al. J. Mol. Spectrosc 253 (2009) 64

/ Plasma & Materials Processing

13-5-2009 PAGE 18

Non-Boltzmann distribution for H₂

700 K for low J 3800 K for high J

Non-Boltzmann distributions in H₂/D₂ jet

Results on H⁻ production

Effect of magnetic field on ETP

Background pressure: 7 ... 300 Pa Gas flow through arc: 1000 ... 5000 sccm Arc power: 5 ... 10 kW Magnetic field: 0 ... 160 mT

TU/e Technische Universiteit Eindhoven University of Technology

Effect of magnetic field on ETP

Excited atom formation

Three body recombination: $H^+ + e^- + e^- H(n) + e^-$ (n high)

Ion-ion recombination: $H^+ + H^- \rightarrow H + H(n)$ (n = 2,3)

Molecular ion recombination: $H_2^+ + e \rightarrow H + H(n) \quad (n \le 2,3)$

Mutual recombination: $H_2^+ + H^- \rightarrow H + H(n) \quad (n \le 5,6 ?)$ $H_3^+ + H^- \rightarrow H + H + H (excitation(?))$

How to proof importance of H⁻?

Photo-detachment

H_{α} emission

H_{α} emission

Photo-detachment of H⁻ (at 1064 nm and 532 nm)

TUe Technische Universiteit Eindhoven University of Technology

13-5-2009

PAGE 28

Experiments (Axial photo-detachment p=3)

Experiments (Axial photo-detachment p=4)

Experiments (Axial photo-detachment p=5)

Conclusions

The cascaded arc is an efficient $H_2^{r,v} D_2^{r,v}$ and $HD^{r,v}$ source

The red to blue transition in the plasma expansion indicates H⁻

Indirect proof of presence of H⁻ through decrease in Balmer-series emission after detachment (but: photo-ionization might be important, and modelling is necessary)

Acknowledgments

Technical staff:

Ries van de Sande, Janneke Zeebregts, Joris Meulendijks, Herman de Jong,

Financial support:

Euratom

