

Laboratoire d'Étude du Rayonnement et de la Matière en Astrophysique

De-excitation of molecular hydrogen upon formation on water ice at 10 K: implications for dense interstellar clouds

Emanuele Congiu

post doc @ LERMA Observatoire de Paris – Université de Cergy-Pontoise

La Londe Les Maures (FR) – 4 May 2009

Key role of molecular hydrogen formation/destruction reactions in the Universe

- Hydrogen = **90%** visible matter

- H + H + grain \rightarrow H₂ + 4.48 eV

The degree of excitation of nascent H₂ will have an impact on the chemistry of the ISM

Energy partition upon H₂ formation

Influence on the dynamics of the interstellar medium

Dense clouds : « H₂ world »

H₂O

H₂O

OCN- H₃O+

CO

CO

- Adsorbed H₂ on the grains
- Modify sticking (Amiaud et al 2007, JCP)
- Isotopic segregation (Dulieu et al 2005,CPL)
- Ortho/para segregation (Amiaud et al 2008, PRL)
- Impact on energetics ?

Experimental apparatus

(FORMOLISM)

Experimental apparatus (D- and H-atom beams)

Experiment

UHV chamber

- 1 Amorphous Solid Water Ice substrate Porous (P-ASW) or Non Porous (NP-ASW)
- 2 **D-beam** (60 % D, 40 % D₂)
- 3 Monitor (real time) the residual partial pressure of D_2

All D₂ molecules

ionizing electron energy in the QMS: Excited-D2 molecules

ionizing electron

energy in the QMS:

15 eV

<u>30 eV</u>

Formation of D₂ upon D irradiation of non-porous ASW

- Behaviour of D_2 and D is different: D+D \rightarrow Formation occurs
- Non dissociated part of the beam adsorbes on the surface and <u>time evolution follows molecular coverage</u>
- Adsorbed molecules enhance the recombination efficiency

- Excited molecules only initially
- Then production of molecules but little internal excitation
- De-excitation favoured by the already adsorbed molecules

- Excited molecules only initially
- Then production of molecules but little internal excitation
- De-excitation favoured by the already adsorbed molecules

А:

B:

C:

Excited molecules from non porous ice Role of already adsorbed molecules

- Adsorbed D₂ molecules on the ice surface: Enhance formation rate but...
- ...de-excite promptly the nascent molecules in regime of surface saturation
- → molecules adsorbed act as energy exchangers (Schutte et al. 1976, JCP)

- No steep increase of excited-D2 signal

Weak signal of excited molecules :

Monthly Notices of the Royal Astronomical Society

Atoms are mobile at 10 K and penetrate the porous structure

- Molecules formed are re-captured by the porous structure: no significant internal energy and no kinetic energy (Hornekaer et al 2003)

Laboratoire d'Étude du Rayonnement et de la Matière en Astrophysique

Although excited-D₂ molecules are formed on an icy surface:

- → conditions in dense clouds (high molecular coverage + possible porous nature of grain surfaces) cause that only a small fraction of newly formed molecules are released in the gas phase with significant internal energy
- •Explains why attempts of excited-H₂ detection in dark quiescent clouds were unsuccessful (Tiné et al. (2003): LDN1498, LDN1512; Lemaire & Field (2001): Barnard 68)
- ➔ Most formation energy is likely to be deposited into icy grains in H₂ dominated region, and perhaps not only on icy surfaces... (on silicates and carbonaceous materials too?)

Laboratoire d'Étude du Rayonnement et de la Matière en Astrophysique

Collaborators (lab team)

Prof. J.L. Lemaire Dr. François Dulieu Dr. Henda Chaabouni Elie Matar (PhD) Hakima Mokrane (PhD) Mourad Chehrouri (PhD) Mario Accolla (visiting PhD)

La Londe Les Maures (FR) – 4 May 2009

Tuning the kinetic energy of the ionising electrons

Tuning the kinetic energy of the ionising electrons

Abrupt decrease of the binding energy (H₂ & D₂)

(fig. 5 & 6, Govers Mattera Scoles, J. Chem. Phys., 1980, 72, 5446)