

Graphite-enhanced NI surface production in H₂/D₂ plasmas

LCAM, Orsay

H. Khemliche, N. Bundaleski, V. Esaulov, P. Roncin PIIM, Marseille

G. Cartry, L. Schiesko, M. Carrère, J.-M. Layet

CCNB

PIIM experimental set-up

Helicon reactor:
 Dischanges : H

- Discharges : H₂ and D₂
- ♦ P = 30-1000 W
- No magnetic field
- ♦ Pr = 0.2 1 Pa
- Graphite sample:
 - Diffusion chamber
 - Faces QMS nozzle
 - Biased down to -80V

Measurement of surface-produced NI distribution functions

Plasma experiments Graphite surface

Plasma measurements

- Measurement of surface-produced NI distribution functions
- No absolute yield measurement, only relative measurements

Voltage Labelling technique

Double capture when H⁺ is non negligible 0.12 Pa Ar et 0.02 Pa H₂, 900W: H⁺ ~H₂⁺ 500 E 0.12 Pa Ar + 0.02 Pa H₂, 900 W 400 = -40 V 300 H⁻ (Arb. u.) 200 100

Double capture explains the high energy (eV)
H energy (eV)

60

50

Strong energy loss on surface during positive ions scattering

70

Evidence for mechanism where H+ positive ions are involved in the production of H- ions.

80

90

100

110

120

H created at rest on HOPG surface will reach plasma with an energy at maximum equal to

$$\mathsf{E}_{\mathsf{o}} = \mathsf{e}(\mathsf{V}_{\mathsf{p}} - \mathsf{V}_{\mathsf{s}})$$

- ★ H⁻ created on HOPG surface via double capture from H⁺ will reach plasma with energy < E₁ = e(V_p - V_s) + e(V_p - V_s) = 2e(V_p - V_s)
- ★ H⁻ created on HOPG surface via double capture from H₂⁺ will reach plasma with energy < E₂ = e(V_p - V_s) + 1/2 (V_p - V_s) = 3/2 e(V_p - V_s)
- ★ H⁻ created on HOPG surface via double capture from H₃⁺ will reach plasma with energy < E₃= e(V_p V_s) + 1/3 (V_p V_s) = 4/3 e(V_p V_s)

* Maximum energy released on surface by $D_2^+ > H_2^+$: $\gamma = \frac{4m_1m_2}{(m_1 + m_2)^2}$ $m_1 = m_H$ or m_D and $m_2 = m_C$

A correction term is added in the maximum energy calculation:

 E_{2} =

Plasma experiments Graphite surface 1000°

H- distribution function at high surface temperature (1000K)

- At high temperature, no H is adsorbed on graphite
- Surface coverage is ~ zero like in beam experiments

Production mechanism has been identified as two e^{-} capture: H_n^+ +Surface \rightarrow H- , n =1...3

Similar to beam results, same mechanism

Plasma experiments Graphite surface Room T

H- distribution function at low surface temperature

- At room temperature, H is adsorbed on graphite
- Surface coverage is "high" and different from beam experiments

H⁻ energy (eV) Surface production is highly enhanced !!!

Minor contribution attributed to two e^- capture: $H_n^+ + Surface \rightarrow H^-$ (25%) Main contribution has been attributed to sputtering: $H_n^+ + H_{adsorbed} \rightarrow H^-$ (75%)

Evidences for mechanism where H⁺ positive ions are involved in the production of H⁻ ions.

Evidence of two types of mechanisms, -one at work on hydrogen_free surface and -one at work when the surface is already covered with hydrogen.

Angle resolved detection of species (NI, PI, atoms, e⁻...) Study of individual NI surface production mechanisms

ARIS-SUD 11

Electron capture, electron loss, excitation mechanisms.

Why negative H-(0.75 eV) are formed on LiF (12 eV)? Why electron yield larger for LiF than for Au (5 eV)?

(Madelung represent almost 8 eV)

Do ions excite the target ?

Yes excitons and trions are formed as the negative ions tries to escape with its electron.

What if single capture is Quenched ? Auger may not be allowed. Double electron capture can be effective.

Strong collaboration with theory : A.G. Borisov, V. Sidis, J.P. Gauyacq etc...

Fundamental processes: simultaneous double capture

CCNB

Collision velocity (a.u.)

At low energy, it is easier to capture two electrons rather than one !!!

Systemes where double capture has been obeserved:

- F^+ on LiF(001) $\Rightarrow F^-$ fraction ~ 40 %
- O^+ on NaCl(001) $\Rightarrow O^-$ fraction ~ 7 %

80

60

40

20

0.00

F⁻ Fraction (%)

- H⁺ on NaCl(001) \Rightarrow H⁻ fraction \sim 1 %

The challenge is to change geometry and energy

The ion or neutral beam will be injected from top. And the probability to identify the projectile, its energy loss

 $50 < E_0 < 1000 \ eV$

CCNB

