

Laboratoire de Physique Subatomique et de Cosmologie

Collaborative work on surface vicinity production of negative ions in hydrogen plasma

S. Béchu¹, D. Lemoine², M. Bacal³, K. Hassouni⁴, A. Bès¹, J. Pelletier¹

1) Laboratoire de Physique Subatomique et de Cosmologie, Centre de Recherche Plasmas-Matériaux-Nanostructures, CNRS-INPG-Université Joseph Fourier, Grenoble, France

2) Laboratoire Collisions Agrégats, Réactivité, CNRS-Université Paul Sabatier Toulouse 3, France

3) Laboratoire de Physique des Plasmas, CNRS-Ecole Polytechnique, Palaiseau, France

4) Laboratoire d'Ingénierie des Matériaux et des Hautes Pressions, CNRS-Université Paris XIII, Villetaneuse, France

Outline

1. Scientific frame

- Hydrogen electronegative plasma in the ITER project
- Research program and collaborative works

2. Theoretical and experimental tools

- Gains and losses mechanisms of negative ions H-
- Experimental set-up and diagnostics (LPSC / LPP)
- Modelling of surface mechanisms and of hydrogen plasma (LPSC / LCAR / LIMHP)

3. Experimental results

- Optical emission spectroscopy
- Laser photodetachment

4. Conclusions

Hydrogen negative plasma

- ITER program
 - ICP ion source (1 MHz / 140 kW / 0.7 Pa) IPP Garching
 - Cs seeding
 - KAMABOKO-III ion source (45 kW / 0.3 Pa) JAERI Japan
 - W Filaments
 - Cs seeding

Research programs

- CEA/IRFM Fédération Fusion 2008 et 2009 grants
- PEPS ST2I (2008-2009)
- ANR Blanc ITER-NIS (2009-2011)

1/ Scientific frame

U. Fantz et al., Rev. Sci. Instrum.. 79, 02A511 2008

A. Krylov et al., Nucl. Fusion 46 (2006) S324-S331

Gains and losses mechanisms

2/ Experimental and theoretical tools

Experimental set-up "Camembert III"

2/ Experimental and theoretical tools

Microwave dipolar sources (@ 2.45 GHz) / 0.4 Pa

Experimental set-up – multi-dipolar plasma

2/ Experimental and theoretical tools

Dipolar source in argon

Overview of the diagnostics

Adsorption + surface-mediated recombination and desorption (Eley -Rideal, hot atom and Langmuir–Hinshelwood mechanisms)

Substrate holder

- Displacements (30 mm)
- DC (+/- 50 V)

Laser photodetachment diagnostic of H- (LPSC/LPP)

2/ Experimental and theoretical tools

Laser beam

- 30 mm displacement width to investigate the surface vicinity
- Samples:
 - disk, Ø 7 cm (stainless steel, Ta)
 - square, 1×1 cm (HOPG graphite)
- Laser beam:
 - 0.093 J/cm² (@ 1064 nm),
 - Ø9 mm
- L-bend Langmuir probe:
 - Ø 0.5 mm, I \approx 17 mm
- Emissive probe

Modelling (LCAR / LIMHP / LPSC)

- Hydrogen Plasma (LIMHP / LPSC)
 - 1D RF Code (Fluid / Monte Carlo) gathering the main chemical reactions of the hydrogen plasma
 - \Rightarrow Radial distribution of the plasma species (H / H₂ / H⁺ / H₂⁺ / H₃⁺ / H⁻)
 - ⇒ Enhancement of the negative ions production

Modelling (LCAR / LIMHP / LPSC)

- Surface mechanisms (LCAR)
 - Quantum modelling of Eley-Rideal reaction cross sections and vibrational distributions

 \Rightarrow Selection of relevant materials to produce H₂(v")

Laser photodetachment

3/ Experimental results

 $H_2(X, v'') + e(<1 \text{ eV}) \xrightarrow{AD} H^- + H$

Dissociation rate effect:

- Hot walls : hot gas / low dissociation
- Cold walls : cold gas / high dissociation

ER/LH/HA

H₂ (X, v")

H + H_{surface}

Laser photodetachment

3/ Experimental results

Material effect :

Distance from surface (mm)

Laser photodetachment

Future works (2009 – 2010)

- Two impulse laser photodetachment
 - Negative ions temperature measurements
- Cold (77 K) or hot (750 °C) sample surfaces and / or biased
 - Control of surface mechanisms
- LIF VUV (TU/e Eindhoven)
 - − H₂(v" >4)
 - LIMHP 1D code checking
- Optical emission spectroscopy in the vicinity of a dipolar plasma source
 - Creation zones of H(r), $H_2(v^{*}<4)(r)$
 - Recombination coefficients
 - LIMHP 1D code checking

Overview of the collaborative work

- LPP (M. Bacal)
 - Laser photodetachment
 - Hydrogen plasma
 - Extraction
- LCAR (D. Lemoine)
 - Relevant material for surface *vicinity* production
 - Hydrogen plasma
- CEA Cadarache IRFM (A. Simonin)
 - A first step in the "fusion world" (ITER-NIS / Fédération Fusion)
- LIMHP (K. Hassouni)
 - 1D RF Code (Fluid / Monte Carlo)

Many thanks to the GdR ARCHES !!

- TU/e Eindhoven (R. Engeln)
 VUV-LIF (H₂(v"))
- FOM Institute for Plasma Physics Rijnhuizen (Aart kleyn)
 - SiC material

Spectroscopie optique

Influence du taux de dissociation :

- Paroi chaude : gaz chaud / faible taux de dissociation
- Paroi froide : gaz froid / fort taux de dissociation

Photodétachement laser

3/ Résultats expérimentaux

5

6

GENERATOR At JLL

LASER CONTROL

AND POWER

SUPPLY

Trigger Laser #2

x 10⁻⁶

2-CHANNEL LASER

Photodétachement laser

Photodétachement laser

3/ Résultats expérimentaux

