XH₄ molecules dissociation on Si, Ni, Pt surfaces: dynamics of excited vibrational modes and relation to transition state structures

Régis Bisson

Laboratory of Molecular Physical Chemistry (LCPM) Swiss Federal Institute of Technology (EPFL) Lausanne, Switzerland

applied

SiH₄/Si(100): *Semiconductor industry*

$$SiH_4 (gas) + -Si-Si- (s) \xrightarrow{Si(100)-2x1} SiH_3-Si-Si-H (s)$$

Dynamics of XH₄ dissociative chemisorption ?

06 may 2009

1. Motivation: XH₄ dissociative chemisorption dynamics?

• CH₄ on Ni surfaces

2. XH₄ vibrations and the relation to transition state structures

- CH_4 on Ni
- SiH $_4$ on Si
- CH_4 on Pt

3. Survival of excited vibrations in physisorbed precursor

• SiH $_4$ on Si

fundamental

Multidimensionality of potential energy surface (PES)

"Polanyi rules"

barrier location on PES \Leftrightarrow energy consumption

more easily overcome with translational energy

more easily overcome with vibrational energy

diatomic case

Traditional setup

surface science - molecular beam

Luntz and Bethune, JCP 90, 1274 (1989)

Translation activation ~ Vibrational activation

06 may 2009

fundamental

Statistical model Bukoski and Harrison JCP 118, 9762 (2003)

CH₄ – surface collision complex:

short-lived (10⁻¹³s) <u>but</u> surface-induced IVR faster due to high-density of states

complete microscopic randomization

of E_t , E_v , E_r

quantitative agreement with "traditional" experimental data

one-dimensional picture of the barrier to reaction is sufficient ! ?

Traditional setup

surface science - molecular beam

Luntz and Bethune, JCP 90, 1274 (1989)

Translation activation ~ Vibrational activation

here the extent of vibrational activation is obtained from a thermally populated ensemble of excited vibrational modes

06 may 2009

general approach

Compare molecular beam reactivity with/without laser excitation

Rotationally cooled temperature thanks to jet expansion

06 may 2009

Utz's group approach

06 may 2009

Beck's group approach

IR (4000-6000 cm⁻¹) RAMAN

06 may 2009

Reactivity measurement: product quantification

"Heterogeneous" system (CH₄/metals): Auger Electron Spectroscopy

"Homogeneous" system (SiH₄/Si): optical reflectivity & SIMS

fundamental

Statistical model Bukoski and Harrison JCP 118, 9762 (2003)

vibration vs. translation Smith Utz, Science **304** (5673), 992 (2004)

If one remove 36 kJ/mol of E_{vib} one nee to add 45 kJ/mol of E_{trans} to keep S₀ identical

> vibration and translation are not equivalent: NON-STATISTICAL

vibration vs. vibration Beck *et al.*, Science **302** (5642), 98 (2003)

CO CO

Isoenergetic vibrations are not equivalent

(mode-specificity)

NON-STATISTICAL

FEDERALE DE LAUSANNE

fundamental

fundamental

JOURNAL OF CHEMICAL PHYSICS

VOLUME 121, NUMBER 8

22 AUGUST 2004

Microcanonical unimolecular rate theory at surfaces. II. Vibrational state resolved dissociative chemisorption of methane on Ni(100)

H. L. Abbott, A. Bukoski, and I. Harrison^{a)} Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904-4319

quanta in each of the two C-H bonds. In this paper, we show by comparison to experiments that the dissociative chemisorption of methane on Ni(100) can be quantitatively treated using the statistical PC-MURT for some methane isotopomers, CH_4 and CD_4 , but not for CD_2H_2 .

2005, *109*, 685-688 Published on Web 12/21/2004

Nonequilibrium Activated Dissociative Chemisorption: SiH₄ on Si(100)

David F. Kavulak, Heather L. Abbott, and Ian Harrison*

Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904-4319

Received: November 10, 2004; In Final Form: December 6, 2004

A three-parameter local hot spot model of gas-surface reactivity is employed to analyze and predict dissociative sticking coefficients for SiH₄ incident on Si(100) under varied nonequilibrium conditions. Two Si surface

the Figure 1c PC-MURT predictions are consistent with energy in all of the molecular vibrational and rotational degrees of freedom being fully exchangeable within the reactive transition state. The influence of rotational energy on dissociative sticking

fundamental

XH₄ dissociative chemisorption dynamics over the time scale of a direct dissociative chemisorption

Vibrational and translational energy are not equivalent

Vibrational modes are not completely scrambled

1. Motivation: XH₄ dissociative chemisorption dynamics

• Vibrational modes are not scrambled over the time scale of a direct dissociative chemisorption

2. XH₄ vibrations and the relation to transition state structures

- CH_4 on Ni
- SiH₄ on Si
- CH_4 on Pt

3. Survival of excited vibrations in physisorbed precursor

• SiH $_4$ on Si

vibrational modes

a short introduction

overtone/combination states have a "purity" >90% in a normal mode description LOCAL MODES

uncoupled anharmonic oscillators

Good descriptor for CD_2H_2 and SiH₄ stretch overtones overtone states have a "purity" of 50-70% in a normal mode description

06 may 2009

vibrational modes

a short introduction

LOCAL MODES

uncoupled anharmonic oscillators

Good descriptor for CD_2H_2 and SiH₄ stretch overtones overtone states have a "purity" of 50-70% in a normal mode description

state-resolved results vs. transition state structures Local modes

120

Bisson ... Beck, J. Chem. Phys. 129 (8), 081103 (2008)

Régis Bisson

06 may 2009

FEDERALE DE LAUSANNE

JOURNAL OF CHEMICAL PHYSICS

VOLUME 120, NUMBER 2

8 JANUARY 2004

Bond and mode selectivity in the reaction of atomic chlorine with vibrationally excited CH_2D_2

Hans A. Bechtel, Zee Hwan Kim,^{a)} Jon P. Camden, and Richard N. Zare^{b)} Department of Chemistry, Stanford University, Stanford, California 94305-5080

(Received 2 September 2003; accepted 13 October 2003)

FIG. 8. Spectator model and cone of acceptance diagram. (a) The Cl $+ CH_2D_2|1100\rangle$ reaction produces C-H excited methyl radical and has a narrower cone of acceptance than (b) the Cl+CH₂D₂|2000 \rangle ⁻ reaction, which produces ground state methyl radical.

On the time scale of reaction

- limited energy flow between C-H bonds
- reaction partner interacts with a single C-H oscillator
- (excited) methyl group acts as spectator

- |2000> as a greater extension of the active X-H bond compared to |1100>
- |2000> better access the transition state structure

06 may 2009

vibrational modes

overtone/combination states have a "purity" >90% in a normal mode description

LOCAL MODES

uncoupled anharmonic oscillators

Good descriptor for CD_2H_2 and SiH₄ stretch overtones overtone states have a "purity" of 50-70% in a normal mode description

06 may 2009

vibrational modes

NORMAL MODES strongly coupled harmonic oscillators

Fig. 6. Methane (CH₄) vibrational normal modes. Adapted from Ref. [119].

Good descriptor for CH₄ fundamental and overtones

overtone/combination states have a "purity" >90% in a normal mode description

Image: State-resolved results vs. transition state structures Normal modes: CH₄ on Ni(111) and Pt(111)

06 may 2009

Régis Bisson

bond length

A lesson?

one might maximize the projection on reaction coordinates

(i.e. the probability for dissociative chemisorption)

by exciting a vibrational mode resembling the transition state structure

Well... qualitatively... maybe...

06 may 2009

state-resolved results

Normal modes: CH₄ on Ni(100)

even though both modes are stretching mode and have similar vibrational energy

 $S_0(v_1) > S_0(v_3)$

Wave packet simulation Milot and Jansen, Phys. Rev. B 61 (23), 15657 (2000)

PES { • CH₄ / Ni but without exit channel (no dissociation) • no corrugation

 \succ v₁ should be more reactive than v₃

energy flow dynamics during vibrationally adiabatic approach

 \succ v₁ should be more reactive than v₃

1. Motivation: XH₄ dissociative chemisorption dynamics

• Vibrational modes are not scrambled over the time scale of a direct dissociative chemisorption

2. XH₄ vibrations and the relation to transition state structures

- Qualitatively, one might maximize the projection on reaction coordinates by exciting a vibrational mode resembling the transition state structure
- Quantitatively, one must be precautious because of dynamics
- 3. Survival of excited vibrations in physisorbed precursor
 - SiH $_4$ on Si

direct vs. precursor-mediated adsorption

• Scattering (<ps):

- Direct adsorption (<ps):
 - XH₄/Surf: no surface-induced IVR on the sub-ps timescale

Precursor-mediated adsorption (>ps):

What about survival of excited vibrational modes ?

excited vibrations in precursors

on the time scale of the precursor no vibrational damping on silicon

Excited Si-H stretch ~4300-4400 cm⁻¹ Band gap ~8950 cm⁻¹ Energy mismatch with 3rd bend overtones

\rightarrow multi-phonon process

06 may 2009

FEDERALE DE LAUSANNE

1. Motivation: XH₄ dissociative chemisorption dynamics

• Vibrational modes are not scrambled over the time scale of a direct dissociative chemisorption

2. XH₄ vibrations and the relation to transition state structures

- Qualitatively, one can maximize the projection on reaction coordinates by exciting a vibrational mode resembling the transition state structure
- Quantitatively, one must be precautious because of dynamics
- 3. Survival of excited vibrations in physisorbed precursor

Conclusion

we need more theoretical studies on dynamics

- Evolution of normal modes upon the approach of a metal surface ?
- Local modes survival in physisorbed precursor (in the spectator approach)?

The group

Dr. Mathieu Schmid / Dr. Plinio Maroni / Dr. Marco Sacchi / Dr. Tung T. Dang Dr. Régis Bisson / Bruce Yoder / Li Chen / Prof. Rainer D. Beck

