

Role of the surface relaxation.

NGC 346 - Small Cloud of Magellan -

Damien Bachellerie

LCAM (Laboratoire des collisions atomiques et moléculaires) (UMR 8625) UPS, Bât. 351, 91405 Orsay Cedex, France

1. Introduction The Interstellar Medium (ISM)

Why are we interested in H₂ in the ISM?

Rovibrational state of H₂ vibrationally cold v = 0.5 *rotationally warm j = 0-30 **

* T. Giannini et al. Astron. Astrophys. **419**, 999 (2004) ** D. Rosenthal et al. A&A **356**, 705 (2000)

PAH (*Polycyclic Aromatic Hydrocarbon*) Small Grains (Carbonaceaous) **Big Grains (Silicate)**

Dust: grains (1%)

Interplanetary /Comet Grains

Diffuse clouds

PhotoDissociation Regions

Dissociation of H₂ very efficient (UV) H>>H, abondance of H₂?

Highly efficient recombination Mechanism of H atoms

1. Introduction Main mechanisms on surface

→ Crucial to understand the distribution of the released energy

F

1. Introduction **Previous Works**

Potential: V. Sidis, L. Jeloaica, A.G. Borisov and S.A. Deutscher dans "Molecular hydrogen in space", (Cambridge University Press2000 pp.89-97.)

1. Introduction Previous Works

Vibrational distribution of H₂

Good agreement between Quantum and Quasi-classical dynamics

Form H_2 in lower rovibrational state as observed in the ISM Take into account the full relaxation of the surface

Study of the formation of H₂ on a surface of 200 carbon atoms

606 degrees of freedom

Classical molecular dynamics

PES of the system?

Quantum calculation (DFT) are presently incompatible with molecular dynamics on the fly

Semi-empirical potential Bond-order potential (D.W. Brenner)

1. Graphene-H-H potential Construction

Brenner empirical potential * Used to study small hydrocarbons

* D.W Brenner Phys.Rev.B. 42, 9458 (1990)

$$E = \sum_{l} E_{l} \quad E_{l_{(ij)}} = \left[V_{R}(r_{ij}) - \overline{B}_{ij} V_{A}(r_{ij}) \right] \quad \overline{B}_{ij} = \frac{B_{ij} + B_{ji}}{2} + \frac{F_{ij}(xi, xj)}{2}$$

Use of DFT calculations Sidis & Jeloaica

Rougeau & Teillet-Billy

Selection of crucial points for the dynamics

Chemisorption well

 $z_{c} = 0.36 \text{ Å}$ $z_{H} = 1.49 \text{ Å}$ V = -0.47 eV

Chemisorption barrier :

=	0.13 Å
=	1.86 Å
=	0.26 eV

Corrugation of the surface Jeloaica and Sidis *Chem.Phys.Letters* 1999

Z_C

 Z_{H}

V

1. Graphene-H-H potential Validation

1H : Collinear approach of H on a C atom (TOP site)

Chemisorption Well:

1. Graphene-H-H potential Validation

1. Results **Collinear approach**

1. Results Non-collinear approach

Relaxation of all the surface (200 atoms)

$$E_{col} \begin{cases} 0.015 \\ 0.05 \text{ eV} \\ 0.2 \end{cases}$$

>10 000 trajectories Velocity-Verlet algorithm

1. Results Non-collinear approach

Rovibrational distribution of H₂

Recession chicage bability

1. Results Non-collinear approach

C

1. Results Non-collinear approach

Sudden approximation

1. Conclusions Conclusions

a realistic potential to study the graphene-H-H system

Potential gave rise to the extended puckering

Cross section behavior is related to the caracteristics of the potential

Significant amount of energy goes into the surface (≈25% of the released energy)

H₂ is formed in lower rovibrational states that found with the constrained relaxation

Structure et dynamique des systèmes collisionnels

Muriel Sizun Dominique Teillet-Billy Nathalie Rougeau François Aguillon Victor Sidis

ANR IRONHI Lerma/Lamap Cergy-Pontoise University Lemaire et al.

LCAM (Laboratoire des Collisions Atomiques et Moléculaires) (UMR 8625) UPS, Bât. 351, 91405 Orsay Cedex, France

