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 High sensitivity low Temperature Nano Electro Mechanical Systems (NEMS)  

Actuation : Oscillating electrostatic force induced 
by gate DC+AC voltage

àMechanical oscillations of graphene (resonator).

Detection : current variation induced by 
vibration-dependant conductance.

Resonance : improvement of quality factor
at low T

Mass detection : zepto-gramme (10-21 g) 
sensitivity

Sticking properties central
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Context : graphene



Hydrogenation of graphene : what about physisorption ?

Graphene exposed to low pressure (0.1 mbar) 
H2 (10%)-Ar for 2 hours 

Context : graphene



H-graphite/graphene interaction
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DISSIPATIVE MECHANISMS NECESSARY FOR STICKING :

- electron-hole excitation ?

- phonon excitation ?



GRAPHENE/GRAPHITE STRUCTURE



sp2 hybridization : 1s2 2s2 2p2  1s2 σ3 π

Network of conjugated π bonds  conductivity
  

ELECTRONIC STRUCTURE OF GRAPHENE



BAND STRUCTURE

DENSITY OF STATES

t=2.8 eV



Graphene is a semi-metal  : 
no band gap but 0 density of states at Fermi level

Because of the low density of states near Fermi level, 
electron-hole formation 
should not be efficient at low energy

Its efficiency may increase with increasing energy



The model : H-graphite interaction
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L. Wirtz, Rubio, Solid. State Com., 131, 141 (2004)

Graphene

Graphite

The model : phonons
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Out-of-plane 
bendingIntra-layer :

Valence-force-field with 2 « spring constants » : 
out-of-plane bending+twisting
T. Aizawa, R. Souda, S. Otani, Y. Ishizawa, C. Oshima, Phys. Rev. B 42 (1990) 11469

Inter-layer :
1 nearest-neighbor « spring constant »
R. Nicklow, N. Wakabayashi, H.G. Smith, Phys. Rev. B 5 (1972) 4951
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For flexural modes (perpendicular to the surface)

The model : phonons
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D = 2 : graphene, D = 3 : graphite

The model : phonons
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Correlation between displacements at different point = measure of long range order : 

500 nm

graphene , ZA : singular integrand
  No order, even at short range 
  instability : crumpling, buckling

Integrand LA, TA ZA

GRAPHITE ω2 ω0
GRAPHENE ω0 ω-1

  GRAPHENE : PHONON PROBLEM

R. Peierls,
Quelques propriétés typiques des corps solides
Annales de l’IHP, 5 (1935) 177

- Stabilization role of coupling between
bending and stretching (anharmonicity)

-  Stabilization role of substrate ?
-  Even for suspended graphene ?



• Weak and not well known vdw interaction 

• Graphite :
interlayer distance : 3.4 Å
interlayer energy : 20 meV/Å2 = 50 meV/atom 

• Graphene supported on SiO2 : 
SiO2-graphene distance : h0= 4.2 Å
SiO2-graphene interaction energy 

Γ0≈ 6 meV/Å2 = 0.1 J/m2 

KZA = 2 d2UvdW/dh2=27Sa Γ0 /h0 ≈  0.8 N/m
Γ0

h0

• Force constant for vibration of graphene on SiO2 

Interaction with substrate for supported graphene

  GRAPHENE : PHONON PROBLEM



• Shift of the dispersion curve

• singularity integrable (van Hove)

  stabilization

Interaction with substrate for supported graphene

  GRAPHENE : PHONON PROBLEM



Self tension for suspended graphene

• Due to the attraction of the SiO2 substrate
(vdw interaction ≈ 0.1 J/m2 = 16 meV/atom)

• Generates a dip z0  ≈  2-20 nm

• Stabilizes graphene and reduces corrugation

• Self tension σ ≈ 0.1-1 N/m (from F/Δz)

• Strain < 1% (≈ σ/E2D, E2D=E*(c/2), E ≈ 1 TPa)

  GRAPHENE : PHONON PROBLEM



Propagation of self tension

At equilibrium: 

3 identical forces F /atom

σ=12 F/perimeter  F/a

(for a large number of crowns)

This constant force F is added to the 
lattice dynamics model
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  GRAPHENE : PHONON PROBLEM



• 0 DOS at Γ point

• removal of the  singularity

  stabilization

Effect of self-tension on DOS

  GRAPHENE : PHONON PROBLEM



1. As it is a 2D membrane, graphene has an anomalous acoustic phonon dispersion

2. This anomalous dispersion induces thermal instabilities

3. Stability as a flat membrane  is restored by the presence of the substrate :

- supported graphene : direct force between substrate and membrane

- suspended graphene : tension induced by the surrounding attractive
substrate contributes to stability

Conclusions on graphene stability and role of substrate 

  GRAPHENE : PHONON PROBLEM



The model : Phonons

Models considered

1. Lattice dynamics 
- 1-3-5-10 layers
- With or without n+1 layer fixed
-Integrand of Ceff ≈ ω-1 (free-standing) or ω0 (on-
substrate)
àstrong coupling

2. Jackson model  (Rayleigh mode type) 

 
-Integrand of Ceff ≈ ω1 

  milder coupling



The model : H-phonons interaction

Linear coupling approximation :

Expansion on phonon modes :

Effective coupling  term (…Fermi Golden rule…) :

η(ω) : density of phonon states
η(ω=0) crucial 

Density of 
Phonon states

Occupation
number Polarization

vector



The model : Dynamical methods

Reduced density matrix propagation (RDM) :

Close coupling wave packet (CCWP) :

Perturbative treatment (PT) : λ=0 wavepacket not affected by phonons

Corrugation

Phonon coupling

Phonons
 



Results : Comparison of RDM/CCWP
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Results : Diffraction mediated selective adsorption 
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Results : effect of the choice of phonon model

Jackson model Lattice dynamics  model 

Strong dependence on phonon model : different density of states
and polarisation vectors

DMSA resonances effective in both cases



Results : effect of the number of layers

• Threshold effect for 1 layer : low energy
phonons not available to stick to excited 

vibrational states at low energy 
• Convergence for number of layers ≥ 3

Lattice dynamics  model,
on substrate 



Conclusions

1. Development of 3D (with corrugation) model for 
H sticking on graphite including a realistic lattice dynamics model

2. Corrugation : strong effect of DMSA resonances on sticking

3. Phonons : strong influence of the choice of model 

4. Stabilizing of substrate to have flat graphene

5. Future work : chemisorption
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