Physisorption of hydrogen on graphene

B. Lepetit, D. Lemoine

Toulouse University, France

Z. Medina, B. Jackson

Amherst University, Massachusetts, USA

Outline

1. Context

2. Model

H-graphene/graphite interaction potentialPhonon modelThe specific problem of grapheneH-phonon coupling modelDynamical methods

3. Physisorption of H on graphene Comparison RDM-CCWP Resonance processes Effect of the phonon model Effect of the number of layers (graphite)

Context : graphene

High sensitivity low Temperature Nano Electro Mechanical Systems (NEMS)

Actuation : Oscillating electrostatic force induced by gate DC+AC voltage →Mechanical oscillations of graphene (resonator).

Detection : current variation induced by vibration-dependant conductance.

Resonance : improvement of quality factor at low T

Mass detection : zepto-gramme (10-21 g) sensitivity $f = \sqrt{\frac{k}{m}}$

Sticking properties central

B. Lassagne, A. Bachtold / C. R. Physique 11 (2010) 355-361

Hydrogenation of graphene : what about physisorption ?

Control of Graphene's Properties by Reversible Hydrogenation: Evidence for Graphane

D. C. Elias, ¹* R. R. Nair, ¹* T. M. G. Mohiuddin, ¹ S. V. Morozov, ² P. Blake, ³ M. P. Halsall, ¹ A. C. Ferrari, ⁴ D. W. Boukhvalov, ⁵ M. I. Katsnelson, ⁵ A. K. Geim, ^{1,3} K. S. Novoselov¹†

Although graphite is known as one of the most chemically inert materials, we have found that graphene, a single atomic plane of graphite, can react with atomic hydrogen, which transforms this highly conductive zero-overlap semimetal into an insulator. Transmission electron microscopy

30 JANUARY 2009 VOL 323 SCIENCE

Graphene exposed to low pressure (0.1 mbar) H2 (10%)-Ar for 2 hours

H-graphite/graphene interaction

V(z) (meV)

Sha, Jackson, 2002

DISSIPATIVE MECHANISMS NECESSARY FOR STICKING :

- electron-hole excitation ?

⁻ phonon excitation ?

GRAPHENE/GRAPHITE STRUCTURE

ELECTRONIC STRUCTURE OF GRAPHENE

sp2 hybridization : 1s2 2s2 2p2 # 1s2 $\sigma3\,\pi$

Network of conjugated π bonds \ast conductivity

BAND STRUCTURE

DENSITY OF STATES

t=2.8 eV

REVIEWS OF MODERN PHYSICS, VOLUME 81, JANUARY-MARCH 2009

The electronic properties of graphene

A. H. Castro Neto

Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, USA

F. Guinea

Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid, Spain

N. M. R. Peres

Center of Physics and Department of Physics, Universidade do Minho, P-4710-057, Braga, Portugal

K. S. Novoselov and A. K. Geim

Department of Physics and Astronomy, University of Manchester, Manchester, M13 9PL, United Kingdom

Graphene is a semi-metal :

no band gap but 0 density of states at Fermi level

Because of the low density of states near Fermi level, electron-hole formation should not be efficient at low energy

Its efficiency may increase with increasing energy

The model : H-graphite interaction

The model : phonons

The model : phonons

For flexural modes (perpendicular to the surface)

Intra-layer :

Valence-force-field with 2 « spring constants » : out-of-plane bending+twisting

T. Aizawa, R. Souda, S. Otani, Y. Ishizawa, C. Oshima, Phys. Rev. B 42 (1990) 11469

Inter-layer :

1 nearest-neighbor « spring constant » R. Nicklow, N. Wakabayashi, H.G. Smith, Phys. Rev. B 5 (1972) 4951

The model : phonons

D = 2 : graphene, D = 3 : graphite

$$u_{i} = \frac{1}{(MN)^{\frac{1}{2}}} \sum_{\mathcal{Q}\sigma} U_{\mathcal{Q}\sigma} \varepsilon_{\mathcal{Q}\sigma}^{s_{i}} e^{i\mathcal{Q}(l_{i}+s_{i})}$$

Thermal average :
$$n_{\omega}(T) = \frac{1}{e^{\frac{\hbar\omega}{kT}} - 1}$$

Correlation between displacements at different point = measure of long range order :

$$\langle (u_i - u_j)^2 \rangle = \frac{\hbar}{MN} \sum_{Q\sigma} \frac{1}{\omega_{Q\sigma}} \left(n_{Q\sigma} (T) + \frac{1}{2} \right) \left| \varepsilon_{Q\sigma}^{s_i} \right|^2 \left(1 - \cos(Q(r_i - r_j))) \right| \rightarrow \frac{kT}{M} \int d\omega \rho (\omega) \left(\frac{Q}{\omega} \right)^2$$

R. Peierls, *Quelques propriétés typiques des corps solides* Annales de l'IHP, 5 (1935) 177

- Stabilization role of coupling between bending and stretching (anharmonicity)
- Stabilization role of substrate ?
- Even for suspended graphene ?

The structure of suspended graphene sheets

Jannik C. Meyer¹, A. K. Geim², M. I. Katsnelson³, K. S. Novoselov², T. J. Booth² & S. Roth¹ NATURE Vol 446 1 March 2007

Integrand	LA, TA	ZA
GRAPHITE	ω2	$\omega \theta$
GRAPHENE	$\omega 0$	<i>ω-1</i>

GRAPHENE : PHONON PROBLEM

Interaction with substrate for supported graphene

· Weak and not well known vdw interaction

• Graphite :

interlayer distance : 3.4 Å interlayer energy : 20 meV/Å2 = 50 meV/atom

 Graphene supported on SiO2 : SiO2-graphene distance : h0= 4.2 Å SiO2-graphene interaction energy Γ0≈ 6 meV/Å2 = 0.1 J/m2

· Force constant for vibration of graphene on SiO2

 $U_{vdW}(h) = -\Gamma_0 \left[\frac{3}{2} \left(\frac{h_0}{h} \right)^3 - \frac{1}{2} \left(\frac{h_0}{h} \right)^9 \right]$

$$KZA = 2 d2UvdW/dh2 = 27Sa \ \Gamma O /hO \approx 0.8 \ N/m$$

GRAPHENE : PHONON PROBLEM

Interaction with substrate for supported graphene

- · Shift of the dispersion curve
- singularity integrable (van Hove)
- * stabilization

GRAPHENE : PHONON PROBLEM

Self tension for suspended graphene

Measurement of the Elastic **Properties and Intrinsic Strength** of Monolayer Graphene

Changgu Lee,^{1,2} Xiaoding Wei,¹ Jeffrey W. Kysar,^{1,3} James Ho

SCIENCE VOL 321 18 JULY 2008

- Due to the attraction of the SiO2 substrate (vdw interaction $\approx 0.1 \text{ J/m2} = 16 \text{ meV/atom}$)
- Generates a dip z0 \approx 2-20 nm
- Stabilizes graphene and reduces corrugation
- · Self tension $\sigma \approx 0.1$ -1 N/m (from *F*/ Δz)
- Strain < 1% ($\approx \sigma/E2D$, $E2D=E^*(c/2)$, $E\approx 1$ TPa)

Impermeable Atomic Membranes from **Graphene Sheets**

J. Scott Bunch, Scott S. Verbridge, Jonathan S. Alden, Arend M. van der Zande, Jeevak M. Parpia, Harold G. Craighead, and Paul L. McEuen*

NANO LETTERS

2008 Vol. 8, No. 8 2458-2462

Propagation of self tension

At equilibrium:

3 identical forces F /atom

 σ =12 *F*/perimeter * *F*/a

(for a large number of crowns)

This constant force F is added to the lattice dynamics model

 \cdot 0 DOS at \varGamma point

- removal of the singularity
- \ast stabilization

Conclusions on graphene stability and role of substrate

1. As it is a 2D membrane, graphene has an anomalous acoustic phonon dispersion

2. This anomalous dispersion induces thermal instabilities

3. Stability as a flat membrane is restored by the presence of the substrate :

- supported graphene : direct force between substrate and membrane
- suspended graphene : tension induced by the surrounding attractive substrate contributes to stability

The model : Phonons

Models considered

$$C_{eff} = \sum_{\mathbf{Q}} \frac{n(\omega_{\mathbf{Q}})e_z(\omega_{\mathbf{Q}})^2}{\omega_{\mathbf{Q}}} \dots \propto \int d\omega \eta(\omega) \frac{n(\omega)e_z(\omega)^2}{\omega}.$$

Lattice dynamics
1-3-5-10 layers

- 1-3-5-10 layers

With or without n+1 layer fixed Integrand of $Ceff \approx \omega - 1$ (free-standing) or $\omega 0$ (on-

substrate)

→strong coupling

$$\omega_{\mathbf{Q}} = \omega_{max} \sin\left(\frac{\pi Q}{2Q_{max}}\right) \quad e_Z(\mathbf{Q}) = \left(\sin\left(\frac{\pi Q}{2Q_{max}}\right)\right)^{\frac{1}{2}} \mathbf{C}$$

Integrand of $Ceff \approx \omega l$ * milder coupling

The model : H-phonons interaction

Linear coupling approximation :

$$V_{c}(\mathbf{r}, \{\mathbf{u}_{\mathbf{i}}\}) = 2\alpha\Delta(z)\sum_{i} \frac{\partial W(\mathbf{R}, \{\mathbf{u}_{\mathbf{i}}\})}{\partial \mathbf{u}_{\mathbf{i}}} \mathbf{u}_{\mathbf{i}} \qquad \frac{\partial W(\mathbf{R}, \mathbf{0})}{\partial \mathbf{u}_{\mathbf{i}}} = Ae^{-\frac{1}{2}Q_{c}^{2}(\mathbf{R}-\mathbf{R}_{\mathbf{i}})^{2}}$$

Bortolani, Franchini, Garcia, Nizzoli,

Santoro, Phys. Rev. B 28, 7358 (1983)

Expansion on phonon modes :

$$V_c(\mathbf{r}, \{\mathbf{u_i}\}) = 2\alpha A\Delta(z) \frac{2\pi}{A_{uc} N_p^{\frac{1}{2}} Q_c^2} \sum_{\mathbf{Q}} \left(\frac{\hbar}{2M\omega_{\mathbf{Q}}}\right)^{\frac{1}{2}} e^{i\mathbf{Q}\mathbf{R}} \ e^{-\frac{1}{2}\frac{\mathbf{Q}^2}{Q_c^2}} e_Z(\mathbf{Q}) \left(a_{\mathbf{Q}} + a_{-\mathbf{Q}}^{\dagger}\right)$$

 $\eta(\omega)$: density of phonon states $\eta(\omega=0)$ crucial

The model : Dynamical methods

Close coupling wave packet (CCWP) :

$$\psi(\mathbf{r},t) = \sum_{i=1-N_r,\lambda=0,\pm 1,\mathbf{Q}} c_i^{\lambda \mathbf{Q}}(t) e^{-i\lambda \mathbf{QR}} \varphi_i(\mathbf{r}) |\{n\}_{\lambda \mathbf{Q}} >$$

$$i\hbar \frac{dc_i^{\lambda \mathbf{Q}}(t)}{dt} = \left(\epsilon_i + \frac{\hbar^2 \lambda^2 Q^2}{2m} + \lambda \hbar \omega_{\mathbf{Q}}\right) c_i^{\lambda \mathbf{Q}}(t) + \sum_{i',\lambda',\mathbf{Q}'} \frac{\mathsf{Phonon \ coupling}}{V_c^{\lambda \mathbf{Q} i \ \lambda' \mathbf{Q}' i'} c_{i'}^{\lambda' \mathbf{Q}'}(t)$$

Perturbative treatment (PT) : $\lambda=0$ wavepacket not affected by phonons

Results : Comparison of RDM/CCWP

Results : Diffraction mediated selective adsorption

Results : effect of the choice of phonon model

Jackson model

Lattice dynamics model

Strong dependence on phonon model : different density of states and polarisation vectors DMSA resonances effective in both cases

Results : effect of the number of layers

Lattice dynamics model, on substrate

DOS

 Threshold effect for 1 layer : low energy phonons not available to stick to excited vibrational states at low energy

· Convergence for number of layers ≥ 3

Conclusions

- Development of 3D (with corrugation) model for H sticking on graphite including a realistic lattice dynamics model
- 2. Corrugation : strong effect of DMSA resonances on sticking
- B. Phonons : strong influence of the choice of model
- 1. Stabilizing of substrate to have flat graphene
- 5. Future work : chemisorption