



Thermal H-content evolution of a-C:H characterized by *in situ* Raman microspectroscopy: Application to Tore Supra deposits

C. Pardanaud<sup>1</sup>, C. Martin<sup>1</sup>, G. Giacometti<sup>1</sup>, R. Ruffe<sup>1</sup>, P. Languille<sup>1-2</sup>, B. Pegourié<sup>2</sup>, C. Hopf<sup>3</sup>, T. Schwarz-Selinger<sup>3</sup>, W. Jacob<sup>3</sup>, P. Roubin<sup>1</sup>

<sup>1</sup>Université d'Aix-Marseille/CNRS, Marseille (FRANCE)

<sup>2</sup>CEA/IRFM, Cadarache (France)

<sup>3</sup>MPI für Plasmaphysik/ EURATOM Association, Garching (GERMANY)

# J - Introduction→ Plasma wall interactions

Tore Supra Tokamak (C.E.A., FRANCE)





- Actively cooled  $\rightarrow$  longer plasma shots

Tore Supra Tokamak (C.E.A., FRANCE)





For ITER: Safety issue

Tsitrone *et al.*, Nuclear Fusion (2009) Pegourie *et al.*, J. Nucl. Mater (2009) Dittmar *et al.*, Physica Scripta (2009) Pardanaud *et al.*, J. Nucl. Mater (2010) Martin *et al.*, J. Nucl. Mater (2011)

1



For ITER: Safety issue

Tsitrone *et al.*, Nuclear Fusion (2009) Pegourie *et al.*, J. Nucl. Mater (2009) Dittmar *et al.*, Physica Scripta (2009) Pardanaud *et al.*, J. Nucl. Mater (2010) Martin *et al.*, J. Nucl. Mater (2011)

1

# **II - Context**→ The D.I.T.S. campaign

#### The D.I.T.S. campaign

Aim:

- Load Plasma Facing Components in Deuterium

- D-inventory

How:

- In-situ gas balance
- One section of the Limiter dismanteled for *post-mortem* analysis
- Compare post-mortem analysis and in-situ gas balance





#### In-situ gas balance



>160 plasma shot (1 min each)

> No saturation
> 10 g of D trapped in the walls during the DITS campaign

Tsitrone *et al.*, Nuclear Fusion (2009) Pegourie *et al.*, J. Nucl. Mater (2009)

Aim: find the 10 g









#### Methodology:

- 1) Identifying zones
- 2) Measuring thickness of relevant tiles
- 3) Identifying frontier of zones









Where is the missing D?

Tsitrone *et al.*, Nuclear Fusion (2009) Pegourie *et al.*, J. Nucl. Mater (2009)

In-depth profiles



-Deposition rate is ≈ constant with time

In-depth profiles









Dittmar et al., Physica Scripta (2009)

#### Aim:

#### $\rightarrow$ Characterizing this slow D-release

Technique:
→ Raman spectroscopy

#### **Methodology:**

→ Refined understanding of Raman spectroscopy on

 « well-known » samples
 → Comparative study with Tore Supra samples

# III − Raman spectroscopy as a tool → Structural characterization → H-content estimator

#### Raman spectroscopy



- Local probe (surface  $\approx 1 \mu m^2$ , depth  $\approx 10-500$  nm)

- Fast technique (1 spectrum in ≈ 100 s or less)

- « Non destructive » technique

#### **Raman spectroscopy of carbons**



#### Local ordering in nc-G







#### Local ordering in a-C





#### Local ordering in a-C





#### **Raman spectroscopy of carbons**



Phys. Rev. B **61**, 14095(2000)

Transition ≈ 2 nm

CARBON 48 (2010) 1592-1597



#### Quantifying ion-induced defects and Raman relaxation length in graphene

M.M. Lucchese <sup>a</sup>, F. Stavale <sup>a</sup>, E.H. Martins Ferreira <sup>a</sup>, C. Vilani <sup>a</sup>, M.V.O. Moutinho <sup>b</sup>, Rodrigo B. Capaz <sup>a,b</sup>, C.A. Achete <sup>a,c</sup>, A. Jorio <sup>a,d,\*</sup>

#### **STM/Raman on exfoliated Graphene**

#### Modelisation of the defects: 2 zones

→ Strutural disorder occuring after ion impact → Selection rules relaxation (activated region)









#### **Raman spectroscopy of carbons**



Ferrari, and Robertson, Phys. Rev. B (2001)

#### **Raman spectroscopy of carbons**



#### Hydrogen content

For as-deposited a-C



Modification of the band tail luminescence model of a-Si:H → Radiative recombination occurs in sp<sup>2</sup> clusters → Non radiative recombination centers are paramagnetic defects

Robertson, Phys. Rev. B 53 (1996) 16302

### **IV - Results**

→ Raman spectroscopy of TS samples



**Heterogeneity** on both Neutraliser and Limiter  $\rightarrow$  Statistical treatment

#### $\rightarrow$ Focus on the limiter



On the limiter : of « a-C:H type» Local organization -> Role of surface T ?



**Erosion zone** 





Tamor et al., J. Appl. Phys. 76 (1994) 3823

Thick deposit zone



Thermal gradient in the gap



Thin deposit zone

#### Local organization even if T=120°C → Precursor local organisation or ion energy influence ?

Tamor et al., J. Appl. Phys. 76 (1994) 3823



 $\rightarrow$  Precursor local organisation or ion energy influence ?

#### Thin deposit zone: In-depth profile



## **IV - Results**

→Raman spectroscopy of TS samples

→Raman spectroscopy of « well known » a-C:H
→Kinetic effect and slow H-release

→Comparative study

#### Hydrogenated amorphous carbons



#### **Plasma deposited**

- Precursor: CH<sub>4</sub>
- On silicon wafer
- e ≈ 200 nm
- 1.7-1.9 g.cm<sup>-3</sup>
- E<sub>ions</sub>≈100-300 eV
- H/H+C ≈ 30-40% (NRA)

A. von Keudell and W. Jacob, Journal of Applied Physics 79, 1092–1098 (1996)B. Landkammer, A. von Keudell, and W. Jacob, Journal of Nuclear Materials 264, 48–55 (1999)

#### a-C:H growth



Wafer

Von Keudell, M. Meier, C. Hopf, Diamond and Related Materials 11 (2002) 969

#### a-C:H growth



#### Chemistry dominated growth zone (≈2 nm)

- Incident atomic H governs the surface activation



Von Keudell, M. Meier, C. Hopf, Diamond and Related Materials 11 (2002) 969

#### a-C:H growth



#### Chemistry dominated growth zone (≈2 nm)

- Incident atomic H governs the surface activation

#### **Ion-dominated zone**

-H<sup>+</sup> implantation  $\rightarrow$  bonding in the film

-Displaced H atoms can recombine to form H<sub>2</sub>

Von Keudell, M. Meier, C. Hopf, Diamond and Related Materials 11 (2002) 969

#### **Defect density in the layer: isotopic effect**



-H content decreases with polarisation

#### Defect density in the layer: isotopic effect



For the same ion kinetic energy, D produces more defects than H  $\rightarrow$  m/H<sub>G</sub> also depends on the number of defects





• m/l<sub>G</sub> not sensitive if H/H+C<10-15 %



- m/I<sub>G</sub> not sensitive if H/H+C<10-15 %
- m/I<sub>G</sub> vary whereas H/H+C is constant

Is m/I<sub>G</sub> still relevant ?



Photoluminescence is quenched for as deposited samples  $\rightarrow 2^{nd}$  experimental evidence of the m/H<sub>G</sub> defects dependency



Photoluminescence is quenched for as deposited samples  $\rightarrow 2^{nd}$  experimental evidence of the m/H<sub>G</sub> defects dependency









- $I_D/I_G$  vary <u>linearly</u> with H/H+C
- $I_D/I_G$  sensitive even if  $H/H+C \approx 2 \%$



But...

→ Was known to give information on local order

## **IV - Results**

→Raman spectroscopy of TS samples

→Raman spectroscopy of « well known » a-C:H
→Kinetic effect and slow H-release

→Comparative study

Kinetic

*In-situ* Raman measurement under Ar atmosphere











-Full symbol:

 $\rightarrow$  post-mortem measurement in UHV condition

- Empty symbols:
 →in-situ measurements in Ar flow

-UHV and Ar flow measurments give similar thermal evolution



No effect of the power LASER on slow H-loss As  $H_D/H_G$  proportional to the H content:  $\rightarrow$  Linear H-loss observed! As most of the results in this presentation have not been published yet, they have not been joined to the GDR website.

However, you can ask for them at:

cedric.pardanaud@univ-provence.fr