

Amorphous-to-microcrystalline transition in a–Si:H under hydrogen-plasma

Aomar Hadjadj

Groupe de Recherche En Sciences Pour l'Ingénieur (GRESPI) Université de Reims.

- **Introduction**
- Experimental setup
- **Some results:**
 - \checkmark Crystallization of a-Si:H under H₂ plasma
 - ✓ Effects of doping on the amorphous-tomicrocrystalline transition
- Conclusions

\square µc-Si:H is an attractive material in large area applications :

- ✓ Active material in photovoltaic devices.
- ✓ Thin Film Transistors.

Understanding the growth mechanism of μc-Si:H is essential for improving the device performances.

- □ Many ways to obtain µc-Si:H
 - ✓ Thermal annealing (T~ 650 °C).
 - ✓ Laser annealing (T~ 1400 °C).
 - ✓ Metal-induced crystallization (T~ 500 °C).
 - ✓ Hydrogen plasma exposure (T < 300 °C).</p>

Hydrogen in silicon based materials

 $\Box \quad Complex \ interaction \ H \rightarrow Si$

- ✓ Surface :
 - Adsorption and desorption
 - H abstraction
 - Etching of Si surface
 - ...
- ✓ Bulk :
 - In-diffusion in the Si network
 - Breaking of weak Si–Si bonds
 - Insertion in Si–Si bonds
 - • • •

Experimental setup

Sensitive and non-disruptive optical technique based on the change in the polarization of the incident light :

$$\rho = \frac{\mathbf{r}_{\mathbf{p}}}{\mathbf{r}_{\mathbf{s}}} = tan\Psi exp(i\Delta)$$

We measure the pseudo-dielectric function $< \varepsilon >$ of the whole sample :

$$<\varepsilon>=<\varepsilon_1>+j<\varepsilon_2>=sin^2(\Phi_0)+\left(\frac{1-\rho}{1-\rho}\right)^2sin^2(\Phi_0)tan^2(\Phi_0)$$

Experimental setup

D Modeling of the optical de la response : Multilayer system (d_k, ε^{eff}) .

Dielectric function $\varepsilon^{eff} \rightarrow$ **Effective medium theory :**

$$\sum_{k} f_{k} = 0$$

- **Dielectric function** ε^k of each component :
 - Experimental reference (measured, literature, ...)
 - Dispersion law (Tauc's Lorentz model for a semiconductor)

Experimental setup

□ Microcrystalline silicon (µc−Si:H) :

- a-Si:H matrix : volume fraction f_a
- Crystallites : volume fraction f_c
- Void : volume fraction f_{v}

Hydrogen modified layer :

- Only bonded hydrogen contributes to the optical response.
- a-Si:H matrix : volume fraction f_a
- Excess of Si–Si₃–H : volume fraction f_H

$\Box \quad H \text{ alone} \Rightarrow \text{etching of a-Si:} H !!!$

• The formation of the H-rich layer : a competition between H insertion and diffusion and SiH₄ production (etching process at a rate r_e).

$$d_{H}(t) = \frac{d_{H}}{t} \left[1 - exp\left(-\frac{t}{\tau}\right) \right]$$

• The H-modified layer forms at a rate r_H .

$$r_{H} = \frac{d_{H}}{\tau}^{0}$$

H-induced crystallization

$\Box \quad H \text{ alone} \Rightarrow \text{etching of a-Si:H } !!!$

• The H-modified layer forms at a rate r_{H} .

$$r_{H} = \frac{d_{H}}{\tau}^{\circ}$$

- A particular temperature dependence at both sides of T = 200 °C of both r_{H} and r_{e} .
- $\Box \quad \text{The geometric average } r_a \text{ rate remains constant :}$

$$r_a = \sqrt{r_e r_a}$$

□ Balance between hydrogen insertion and film etching : $(Si - Si)_{weak} + H_{gas} \longrightarrow Si - H + SiH_4$

H-induced crystallization

□ H is essential but not suffiicient for the crystallization of a-Si:H.

Phosphorus-doped a-Si:H: Similar behavior as undoped material. Boron-doped a-Si:H:
 Higher amplitude of the
 <ε₂> peak and a well–
 defined feature at 4.2 eV.

Undoped a-Si:H:

Doping effects

- t₁ ~ 5 min : hydrogen diffusion and etching, which provide the necessary conditions for crystallites nucleation.
- Correlation between V_{dc} and the solid-phase transformation of a-Si:H.
- V_{dc} can be used as a diagnostic tool to detect the a $\rightarrow \mu c$ transition in undoped a-Si:H.

Doping effects

- **D** Phosphorus-doped a-Si:H
 - Kinetics of a → µc transition as in undoped a-Si:H (t₁ ~ 5 min and t₂ ~ 10 min).
 - Same correlation between V_{dc} and $\langle \epsilon_2 \rangle$ as in undoped a-Si:H.

Doping effects

Boron-doped a-Si:H:

- An earlier $a \rightarrow \mu c$ transition $(t_1 \sim 3 \text{ min}).$
- A faster $a \rightarrow \mu c$ transformation ($t_2 \sim 6$ min).
- No clear correlation between V_{dc} and $<\varepsilon_2>$.

Formation of a H-rich subsurface layer (thickness d_H and excess of hydrogen f_H) and the growth of a μ c–Si:H layer (thickness d_C). **The** μ c-Si:H layer is represented by a linearly graded layer: $f_{CI}, f_{AI}, f_{VI},$ at the bottom side and $f_{C2},$ f_{A2}, f_{V2} at the top side.

GDR-ARCHES 2011

Doping effects

Doping effects

 $\begin{pmatrix} 60 \\ (3) \\ (3$

• d_H and f_H increase during the first 10 min to reach values close to 45 nm and 25 %, respectively • An early nucleating process ($f_C = 10$ %) since 3 min with high and constant void fraction.

Doping effects

D Phosphorus-doped a-Si:H:

- Same time-evolution of d_H and f_H as function of the plasma treatment time.
- Same kinetics of µc-Si:H growth.

RESPI Groupe de Recherche En Sciences Pour l'Ingénieur

Boron-doped a-Si:H:

- d_H sharply increases and reaches a higher saturation value of 46 nm while f_H reaches 40 %.
- The crystalline fraction, low at the beginning, rapidly increases to exceed 50 %. The fraction of voids keeps a low value $(f_V \sim 20 \%).$

Conclusions

- The combination of ellipsometry and V_{dc} measurements gives complementary information on the transition layer and the following growth of the μ c-Si:H layer.
- ✓ Hydrogen diffuses within 40 50 nm of the a-Si:H substrate. The H diffusion is faster in boron-doped material and leads to a higher hydrogen excess up to 40 %.
- ✓ Hydrogen plasma produces an early porous nucleating layer in intrinsic and n_type a_Si:H. The nucleation arises later for the p_type substrate within a more compact layer.
 - The hydrogen action at both sides of the μc–Si:H layer leads to a non-uniform crystalline and void fractions along the growth direction, especially for intrinsic and n–type a– Si:H.

A fruitful collaboration with LPICM (Ecole Polytechnique, Palaiseau)

Appl. Phys. Lett. 94 061909 (2009).
J. Vac. Sci. Technol. A 28 309 (2010).
J. Appl. Phys. 108 093705 (2010).