From the work by M. Lattelais, F. Pauzat, Y. Ellinger Computational Approach to the Adsorption of H₂ on Interstellar Surfaces

Laboratoire de Chimie Théorique Université Pierre et Marie Curie UPMC - Paris 6

Importance of interstellar dust grains

Typical structure of grains

Silicates, carbone, glaces
Accretion

Physisorption/ChemisorptionDepletion of atoms and molecules

Chemical processes

- Grains as reaction support
- Grains as reactants provider

Adsorption on interstellar grains

ISOCAM picture of M16, the Eagle nebula

Centaurus A Radio Galaxy (VLT KUEYEN + FORS2)

ESO PR Photo 05h/00 (8 February 2000)

European Southern Observatory

Credit ESA / ISO

$\begin{array}{l} \mbox{Methodologies} \\ \mbox{weak interactions with systems of large dimension} \\ \mbox{} \rightarrow \mbox{DFT}: \mbox{PW91} \end{array}$

- « supermolecule » approach: correction BSSE Tran et al. J. Phys. Chem. B (2002); Heine et al. PCCP (2004)
- KSCED approach

Tran et al. J. Phys. Chem. B (2002)

Periodic approach: plane waves

Model of solid water surfaces:

amorphous ice

Buch et al. Int. Rev. Phys. Chem. (2004)

Periodic approach

« super-cell »

Horizontal replication

hauteur de

la maille (Å)

 ΔE (kcal/mol)

Test of the adsorption energy of a dipolar system: HCN

Experimental value: E = 1,1 ~1.2 kcal/mol

Vidali et al. Surf. Sci. Rep. (1991)

Position of H₂

Orientation of H₂

L: middle of a bond

C: carbon atom

O: center of the ring

X: // to planeY: // to planeZ: ⊥ to plane

Table 2. H₂–graphene equilibrium distances, z_m (Å), and corresponding adsorption energies in kcal mol⁻¹; laterally averaged values are given for \parallel to the surface orientations.

Graphene cell	Site	to surface		⊥ to surface	
		Zm	ΔE	Zm	ΔE
Cell 1	0		Rep.		Rep.
	С		Rep.		Rep.
	L		Rep.		Rep.
Cell 2	0	3.26	-0.87	3.40	-0.88
	С	3.60	-0.91	3.56	-0.89
	L	3.52	-0.88	3.47	-0.88
Cell 3	0	3.25	-0.79	3.59	-0.81
	С	3.59	-0.79	3.54	-0.80
	L	3.51	-0.79	3.47	-0.79
Cell 4	0	3.23	-0.74	3.45	-0.77
	С	3.57	-0.72	3.59	-0.76
	L	3.51	-0.73	3.47	-0.76
Cell 5	0	3.24	-0.74	3.38	-0.76
	С	3.52	-0.72	3.41	-0.75
	\mathbf{L}	3.50	-0.73	3.53	-0.76
Cell 6	0	3.23	-0.74	3.40	-0.76
	С	3.52	-0.72	3.38	-0.74
	L	3.52	-0.70	3.77	-0.74

Adsorption of H₂ on graphene

Single H₂

Repulsive at short distance Independent of orientation \rightarrow H₂ able to roll on the surface

Monolayer of H₂

More stable for inter- H_2 distance close to H_2 dimer

Adsorption of H₂ on graphene: looking for H₂ dimers

d ___= 2.46 Å H₂ dimer: d ___~ 3.7 Å

Cui & Fain, J. Vac. Sci. Tech., (1987)

Other arrangements satisfying the hexagonal structure

Adsorption of H₂ on graphene: looking for H₂ dimers

Best coverage for inter- H_2 distance close to H_2 dimer

The physisorption energy per molecule in a monolayer is dependent on the distance between adsorbed molecules:

Physisorption on adjacent rings is not possible
 Best energetical arrangement when d_(H2-H2) ~ d_(dimer)
 Two situations favored: ∆E~ 1 kcal/mol
 ↔ H₂ on top of the ring center associated with
 • H₂ on top of a C
 • H₂ on top of the middle of a CC bond

The best coverage by physisorption in a monolayer gives:

- > Surface density of one H₂ per 12 Å² \implies N ~ 0.8 x 10¹⁵ H₂/cm²
- \succ H₂ to C ratio = 1 / 4.6
- Assuming 15-20% of interstellar C locked in aromatic systems 2 x 10⁻⁵ of H₂ trapped on PAHs

Only a small amount of H_2 can be trapped on PAH-like surfaces but:

> A mattress of H_2 may play the role of shock absorber

- Provide a smooth landing ≠ bouncing back to gas phase
- Help adsorption of incoming species
- > A mattress of H_2 may modify the physics of the surface
 - Change vibration frequencies (low energy modes)
 - > A mattress of H_2 may modify the chemistry of the surface
 - Enhance the formation of H_3^+ where H_2 can be ionized

> A mattress of H_2 may modify the heating rate of the gas

 Low energy IR radiations often neglected in the evaluation of the gas-grain energy balance could release H₂ with greater energy than when adsorption occured.

Model of solid water surfaces:

Periodic approach: crystalline ice

Hexagonal ice

- Apolar
- Stable slabs

Adsorption of H₂ on hexagonal ice

Hexagonal mesh of H₂ on top of hexagonal ice

Single H₂

Position: on top of oxygen sites

Orientation: Z favored

d _(H2-H2)	Zm	ΔΕ		
2.79	3.17	-0.14		
3.35	3.15	-1.04		
4.19	2.89	-1.30		
5.58	3.08	-0.90		
8.37	2.93	-1.44		
16.74	2.93	-1.45		
Distance in Å; ∆E in kcal/mol				

Adsorption of H₂ on hexagonal ice

Hexagonal mesh of H₂ on top of hexagonal ice

Monolayer of H₂ repulsive Distance Π between H₂ 8 10 12 14 16 18 -0,2 molecules -0,4 Not on top of Global Oxygen site -0,6 interaction -0,8 energy -1 -1,2 -1.45 kcal/mol -1,4 -1.6 --1.30 kcal/mol

Adsorption of H₂ on hexagonal ice

H₂ on top of oxygen atoms

Rows of H₂

Nearest neighbours are 2 instead of 6

➡ H₂ dimer: d — ~ 3.7 Å

 $\Delta E = 1.47 \text{ kcal/mol}$

The adsorption energy is larger on the ice than on graphene but the coverage should be slightly smaller

Lattelais, Pauzat & Ellinger, in preparation (2011)

Comportement des fonctionnelles d'échange en fonction du gradient réduit

Petit gradient réduit = grande densité

Comportement

« identique »

petites

réduit s

Zone van der Waals: Grand gradient réduit = petite densité