

Physisorption de H₂ sur PAH: étude théorique

LETMEX

F. Cheikh Y. Ellinger F. Pauzat

Université de Genève

F. Tran T. Wesolowski

Du plus petit aux plus gros

PAH réels

PAH modèles

- neutres
- cations
- anions

. . .

- hydrogénés
- déshydrogénés

Spectre Infrarouge du 2,3-Naphthyne en Matrices de gaz rares

H.A. Weimer, B.J. McFarland, S. Li, W. Weltner J. Phys. Chem. 99, 1824 (1995)
F. Pauzat, D. Talbi and Y. Ellinger Astronomy and Astrophysics, 293, 263 (1995)

	Obser	vé			Calculé	
Ne	rel. Int	Ar	Kr	freq	abs. Int	attribution
3098	8	3082		3090	13	r(CH)
3084	10	3078		3078	19	r(CH)
3069	16	3063		3065	21	r(CH)
1213.1	4			1232	23	$\beta(CC)/R(CC)$
1018.3	2			1010	17	R(CC)/ß(CH)
848.6	9		847.6	869	24	$\alpha(CCC)$
834.1	37	833	832.2	843	74	ε(CH)
738.6	47	738	736.7	739	51	$\tau(CCCC)$
618.1	79	618	616.2	600	54	α (CCC)
451.8	9			446	22	τ(CCCC)
446.5	{92}	444	444	438	92	a(CCC)

Traitement des interactions faibles

- Local MP2
- SAPT

Méthodes Coupled Cluster

Méthodes variationnelles

• MCSCF/ICF

DFT

Méthodes LDA

Méthodes GGA • Choix des fonctionnelles

Artefact de superposition de base (BSSE)

Formalisme de Kohn-Sham

L'énergie totale s'exprime comme une fonctionnelle de la densité électronique

$$E_{KS}\left[\rho\right] = T_{s}\left[\rho\right] + J\left[\rho\right] + E_{xc}\left[\rho\right] + \sum_{A} \frac{Z_{A}}{\left|r - R_{A}\right|}\rho(r)dr$$

La densité électronique s'exprime en terme d'orbitales φ_i

$$\rho = \sum_{i=1}^{N} |\varphi_i|^2$$

L'énergie cinétique des électrons s'exprime en terme d'orbitales φ_i

$$T_{s}\left[\rho\right] = \sum_{i=1}^{n} \left\langle \varphi_{i} / -\frac{1}{2} \nabla^{2} \varphi_{i} \right\rangle$$

L'énergie de répulsion entre électrons s'exprime en terme d'orbitales φ_i

$$J[\rho] = \frac{1}{2} \int \int \frac{\rho(r_1)\rho(r_2)}{|r_1 - r_2|} dr_1 dr_2$$

rôle de la fonctionnelle d'échange

Formalisme LDA - formalisme GGA

$$E_{xc}^{LDA}[\rho(\mathbf{r})] = \int \rho(\mathbf{r}) \, \varepsilon_{xc}(\rho(\mathbf{r})) \, d\mathbf{r}$$

$$= E_x^{LDA}[\rho] + E_c^{LDA}[\rho]$$

$$= \int \rho \, \varepsilon_x(\rho) \, d\mathbf{r} + \int \rho \, \varepsilon_c(\rho) \, d\mathbf{r}$$

$$\varepsilon_x^{LDA}(\rho(\mathbf{r})) = A_x \rho(\mathbf{r})^{1/3}$$

$$E_{xc}^{GGA}[\rho(\mathbf{r})] = \int \rho(\mathbf{r}) \, \varepsilon_{xc}^{GGA}(\rho(\mathbf{r}), \nabla \rho(\mathbf{r})) \, d\mathbf{r}$$

 $\varepsilon_x^{GGA}(\rho(\mathbf{r}), \nabla \rho(\mathbf{r})) = A_x F_x[s] \rho(\mathbf{r})^{1/3} \quad s = \frac{|\nabla \rho|}{\rho^{4/3}}$

Enhancement factor F_x

$$\varepsilon_x^{GGA}(\rho(\mathbf{r}), \nabla \rho(\mathbf{r})) = A_x \int F_x[s] \rho(\mathbf{r})^{1/3} \qquad s = \frac{|\nabla \rho|}{\rho^{4/3}}$$

$$\implies F_x^{B88}[s] = 1 + \frac{b \ s^2}{1 + 6b \ s \ \sinh^{-1} \ s}$$

$$\Rightarrow F_x^{PW86}[s] = \left[1 + \alpha \ s^2 + \beta \ s^4 + \gamma \ s^6\right]^{1/15} \implies \begin{array}{c} \text{Lacks \& Gordon} \\ \text{LG (Gaussian98)} \end{array}$$

$$= F_x^{PW91}[s] = \frac{1 + 6b \ s \ \sinh^{-1}(gs) + [0.2743 - 0.1508 \exp(-100s^2)] \ s^2}{1 + 6b \ s \ \sinh^{-1}(gs) + 0.004s^4}$$

Adamo & Barone mPW, mPWn (*hybrid*) (Gaussian98) Perdew, Burke et Ernzerhof PBE

Comportement des fonctionnelles d'échange en fonction du gradient réduit Wesolowski et al 1997. (JPC, A101, 7818) 6.0 **PW86** $F_x^{B88}[s]$ diverge **B88** PW91 LDA 4.0 Fx[s] Comportement « identique » 2.0 des fonctionnelles d'échange pour les petites F_x^{PW91} [s] devient nulle valeurs du gradient 0.0 └─ 0.0 5.0 10.0 15.0 20.0 réduit s s Zone van der Waals: Petit gradient réduit = grande densité Grand gradient réduit = petite densité

Représentations atomiques utilisées

Base atomique	Elément	Contraction
6-311++G(dp)	Н	$6s, 1p \rightarrow 4s, 1p$
	С	$12s,6p,1d \rightarrow 5s,4p,1d$
aug-cc-pVTZ	Н	$6s,3p,2d \rightarrow 4s, 3p,2d$
	С	$11s,6p,3d,2f \rightarrow 5s, 4p,3d,2f$
aug-cc-pVQZ	Н	$7s,4p,3d,2f \rightarrow 5s,4p,3d,2f$
	С	$13s,7p,4d,3f,2g \rightarrow 6s,5p,4d,3f,2g$
TZVP	Н	$5s,2p \rightarrow 2s,2p$
	С	$10s,6p,1d \rightarrow 4s,3p,1d$
Partridge	Н	$7s,4p \rightarrow 7s,4p$
	С	$13s,8p,4d \rightarrow 13s,8p,4d$

Benzène

Naphtalène

0

Anthracène

Modèles de PAH et de structure graphitique

Pérylène

Pyrène

Coronène

Ovalène

correction a priori de la BSSE

Correction *a priori* de la BSSE

$$\underline{E_{corr}} = \underline{E}_D(\underline{\mathcal{B}}_D, \mathbf{r}_D) - \sum_{M=1,2} (E_M(\underline{\mathcal{B}}_D, \mathbf{r}_D) - E_M(\underline{\mathcal{B}}_M, \mathbf{r}_D))$$

ZPE corrigée de la BSSE

$$\mathbf{H}_{corr} = \mathbf{H}_{D}(\mathcal{B}_{D},\mathbf{r}_{D}) - \sum_{M=1,2} (\mathbf{H}_{M}(\mathcal{B}_{D},\mathbf{r}_{D}) - \mathbf{H}_{M}(\mathcal{B}_{M},\mathbf{r}_{D}))$$

Calculs KS-PW91/6-311++(dp) avec et sans BSSE pour H₂ en position o

PAH	H_2	avec	BSSE	sans	BSSE
		Zm(Å)	$\Delta \mathbf{E}_{\mathbf{kcal/mol}}$	Zm(Å)	$\Delta \mathbf{E}_{\mathbf{kcal/mol}}$
Anthracène	X	3.42	-0.47	3.30	-0.50
	У	3.34	-0.43	3.23	-0.50
	Z	3.41	-0.51	3.39	-0.84
Pérylène	X	3.44	-0.44	3.32	-0.61
	У	3.42	-0.48	3.28	-0.57
	Z	3.54	-0.47	3.38	-0.74
Coronène	X	3.44	-0.45	3.29	-0.64
	У	3.44	-0.45	3.28	-0.64
	Z	3.50	-0.47	3.43	-0.71
Ovalène	X	3.41	-0.46	3.30	-0.62
	У	3.41	-0.46	3.28	-0.63
	Z	3.46	-0.48	3.41	-0.69

Calculs MP2 avec BSSE pour le complexe Benzène \dots H₂

Méthode	Base atomique	H_2	Zm(Å)	$\Delta E_{kcal/mol}$
MP2	6-311G++(dp)	X	3.27	-0.30
	aug-cc-pVTZ	X	3.01	-0.80
	aug-cc-pVQZ ^a	X	3.01	-0.86
	6-311G++(dp)	Z	3.30	-0.64
	aug-cc-pVTZ	Z	3.09	-1.14
	aug-cc-pVQZ ^a	Z	3.09	-1.21

Calcul effectué à la géométrie optimisée aug-cc-pVTZ

L'alternative KSCED Kohn-Sham with Constrained Electronic Density*

Concept de base : 2 densités disjointes en interaction

Correction *a-priori* de la BSSE

 $E^{\text{KSCED}}[r_1, r_2] =$ bifonctionnelle de ρ_1 et ρ_2

1° étape: ρ_2 « gelée », ρ_1 minimisée dans le champ de ρ_2 \sim 2° étape: r₁ « gelée », r₂ minimisée 3° étape – jusqu 'à convergence

Formalisme de Kohn-Sham avec densité électronique contrainte

L'énergie totale s'exprime comme une bi fonctionnelle des 2 densités électroniques

$$E_{KSCED}\left[\rho_{1},\rho_{2}\right] = T_{s}\left[\rho_{1}\right] + T_{s}\left[\rho_{2}\right] + T_{s}^{nadd}\left[\rho_{1},\rho_{2}\right] + \frac{1}{2} \iint \underbrace{\left(\left(\rho_{1}\left(r\right) + \rho_{2}\left(r\right)\right)\left(\rho_{1}\left(r'\right) + \rho_{2}\left(r'\right)\right)\right)}_{\left|r-r'\right|} dr dr' + E_{xc}\left[\rho_{1}+\rho_{1}\right] - \sum_{A} \iint \frac{Z_{A}}{\left|r-R_{A}\right|}\left(\rho_{1}\left(r\right) + \rho_{2}\left(r\right)\right) dr$$

L'énergie cinétique non-additive s'exprime en fonction des 2 densités électroniques $T_s^{nadd} \left[\rho_1, \rho_2 \right] = T_s \left[\rho_1 + \rho_2 \right] - T_s \left[\rho_1 \right] - T_s \left[\rho_2 \right]$

Les 2 densités électroniques électroniques s'expriment en fonction des orbitales

$$\rho_1 = \sum_{i=1}^{N} |\varphi_i|^2 \qquad \qquad \rho_2 = \sum_{j=1}^{N} |\varphi_j|^2$$

Fragment 1 Fragment 2

Calculs KS avec BSSE et KSCED pour le complexe Benzène \dots H₂

Méthode	Base atomique	H_2	Zm(Å)	$\Delta E_{\text{kcal/mol}}$
KS/PW91	6-311G++(dp)	X	3.35	-0.42
	aug-cc-pVTZ	X	3.45	-0.43
	aug-cc-pVQZ	X	3.46	-0.43
	Partridge	X	3.45	-0.41
KS/mPW	6-311G++(dp)	X	-	-
	Partridge	X	-	-
KSCED/PW91	TZVP	X	2.66	-1.16
	Partridge	X	2.70	-1.17
	TZVP	У	2.64	-1.17
	Partridge	У	2.66	-1.19
	TZVP	Z	2.88	-1.18
	Partridge	Z	2.89	-1.26

Calculs KS avec BSSE et KSCED PW91/6-311++(dp) avec H₂ en position o

PAH	H_2	KS avec BSSE		KSCED	
		Zm(Å)	$\Delta \mathbf{E}_{\mathbf{kcal/mol}}$	Zm(Å)	$\Delta E_{kcal/mol}$
Anthracène	X	3.42	-0.47	2.66	-1.22
	у	3.34	-0.43	2.61	-1.23
	Z	3.41	-0.51	2.89	-1.00
Pérylène	X	3.44	-0.44	2.64	-1.26
	У	3.42	-0.48	2.61	-1.31
	Z	3.54	-0.47	2.89	-0.90
Coronène	X	3.44	-0.45	2.65	-1.25
	У	3.44	-0.45	2.61	-1.26
	Z	3.50	-0.47	2.89	-0.92
Ovalène	X	3.41	-0.46	2.65	-1.24
	У	3.41	-0.46	2.21	-1.27
	Z	3.46	-0.48	2.89	-0.92

Calculs KS avec BSSE et KSCED pour le complexe Pyrène | Anthracène \dots H₂ en position o

Méthode	Orientation	Zm(Å)	$\Delta E_{kcal/mol}$
KS	X	3.48	-0.46
	У	3.40	-0.42
	Z	3.45	-0.57
KSCED	X	2.66	-0.64
	У	2.62	-1.14
	Z	2.89	-1.21

Expérimentalement: $\Delta E H_2$ /graphite = 1.19 kcal/mol

Collage de l'hydrogène moléculaire

Formation de H₂ à partir des ions PAH⁺

Mécanisme en 2 étapes avec régénération

Mécanisme en 1 étape suivie de régénération

Courbes de dissociation suivant R

- Configuration T
- Courbes corrigées a priori de la BSSE
- Bases *ab initio* : 6-31+G*; DFT : (7111/411/1*)

L'interface solide / gaz

Structure d'un grain (selon M. Greenberg)

- Structure des glaces moléculaires
- Accrétion

Physisorption

- Déplétion atomique et moléculaire
- Modification des signatures spectrales

Processus chimiques

- Le grain comme support de la réaction
- Le grain comme source de réactifs

