Les recherches autour de la fusion contrôlée

vues de l'université / CNRS

- Fusion / CEA
- Fusion / physique des plasmas

... existence de collaborations (turbulence, matériaux ...)

Structuration d'un lien fort

LRC : Laboratoire de Recherches Conventionné CNRS / universités et association Euratom - CEA (DRFC, Tore Supra)

- Turbulence
- Physique atomique
- Diagnostics
- Interaction plasma paroi

PIIM-Marseille

PMIA-Nancy

CP2M/TECSEN-Marseille

Interaction plasma-paroi

I. Etudes en amont : graphite modèle et interaction avec H

- Expérimentales (J.-M. Layet, T. Angot ... PIIM)
 - surfaces HOPG / H, H⁺
 - analyse des défauts : par bombardement, par adsorption
 - diagnostic électronique et vibrationnel : HREELS
 - diagnostic électronique et structural : STM
 → surface de tungstène

<u>Modélisation</u> (A. Allouche, Y. Ferro … PIIM)

- surface parfaite / H
- méthodes de la chimie quantique (DFT mol., périodique)
- adsorption : sites, énergies, vibration, structure électronique (E_F)
- adsorption : diffusion / recombinaison (E-R, L-H)
- défauts : lacunes, dopants

→ C amorphe, surface métallique

Liens étroits entre les deux études

II. Simulations en laboratoire :

Analyse des mécanismes de formation de grains de C

• Formation de poudres carbonées (C. Arnas, PIIM)

- réacteur à plasma (Ar), cible en carbone
- caractérisation des nano-particules sphériques de carbone

(IRTF, Raman, microscopie électronique...)

mécanismes de condensation des précurseurs

→ comportement % implantation d'hydrogène

• <u>Diagnostic des gaines magnétiques</u> (J. Bougdira, R. Hugon ... PMIA)

- fluorescence induite par laser, Mirabelle, surface de tungstène
- orientation du champ **B**
- codes de simulation cinétique (G. Manfredi)

→ réacteur basse pression de type ECR
 contrôle indépendant du flux et de l'énergie des ions

III. Etudes en aval : caractérisations post-mortem de dépôts

<u>Etudes par microscopie électronique</u> (A. Charaï, W. Saïkali, CP2M)

- caractérisation morphologique des dépôts par MEB / MET (CEA, PIIM)
- références par EELS pour la quantification H / C sur HOPG
- composants à haut flux, brasage CuCrZn, maquettes ITER

<u>Caractérisation des dépôts de tokamaks</u> (P. Roubin, C. Martin, PIIM)

 analyses structurale et texturale MEB, MET, diffraction X, volumétrie d'adsorption

 analyses spectroscopiques IR-TF, Raman, absorption X, RMN

> complémentarité et nécessité d' études multi - échelles : 0.1 nm - 100 µm

Dépôts carbonés de parois de tokamaks :

caractérisations volumétriques et spectroscopiques

Motivations

- anomalie de l'émission infrarouge due aux dépôts
 - microscopie électronique
 - isothermes d'adsorption par volumétrie
- rétention et diffusion de l'hydrogène dans les parois
 caractérisations structurales et chimiques (spectroscopies)

 Comparaison avec des matériaux de référence <u>CFC</u>, HOPG, charbon actif (CA)

Echantillons de Tore Supra (TS)

TPL (limiteur : **lpt**)

TS-TPL-LE (neutraliseur : **ntr**) VOL

TPL

TS-VOL-Cu TS-VOL-CFC

• *dépôts qualifiés de soft layer, hard layer : amorphe et de haute teneur en D*

200 µm

2 μ**m**

ntr

lpt

CFC

CFC (50 μm)

<u>ntr (50 μm)</u>

ntr (50 µm)

• position et largeur du pic $002 \leftrightarrow$ qualité de la graphitisation

	20 / °	d / Å	$\delta(2\theta)$	L_{c}/nm
CFC	26.54	3.36	0.23	74
pyrolytique	26.21	3.40	0.47	36
ltp	26.10	3.41	1.58	11
ntr	25.86	3.45	2.01	8

dépôts : signature d'un graphite turbostratique

Absorption X

π* (285 eV) ↔ sp²
diffusion multiple (MS : 291-307 eV)
↔ ordre à moyenne échelle (L_a > 0.7 nm)
exciton E ↔ sensibilité aux défauts

dépôts :signature sp² ↔ aromaticité présence de défauts lpt / ntr : plus de désordre

Spectroscopie Raman

G <u>Graphite-like band</u> ↔ atomes C trivalent (sp²)
 D <u>D</u>isordered-like band (sp²) *ou* liaison intermédiaire sp² / sp³

présence de G et D ↔ graphite ou nc-C de type graphitique
largeurs et hauteur relative ↔ désordre
(a-C ou a-C:H : une seule bande très large à 1550 cm⁻¹)

Décomposition des spectres

		G		D									
	Р	W	Ι	Р	W	Ι	P	W	Ι	Р	W	Ι	ID/IG
HOPG	1582	14	100	-	-	0	-	-	0	-	-	0	-
pvrolvtique	1584	22	82	1353	41	17	-	-	0	1625	8	1	0.2
CFC	1584	25	46	1351	52	45	-	-	0	1619	35	9	1.0
	1584	18	64	1353	52	30	-	-	0	1622	28	6	0.5
ntr NIR-LE	1598	65	24	1350	87	55	1524	124	16	1226	186	5	2.3
VOL-Cu	1597	70	13	1347	196	58	1545	157	25	1145	253	5	4.5
VOL-CFC	1592	52	32	1357	74	57	1534	78	12	-	-	0	1.8
lpt TPL-US	1595		16	1350	110			179	23	1244	414		2.1
			17	1354	130			105	14	1248	472		1.5
			24	1354	143			150	26	1238	312		1.2

dépôts : majoritairement sp² très désordonné : domaines cristallins < 4 nm lpt / ntr : plus de défauts de type sp³

Premiers bilans

les dépôts ne sont pas amorphes

- hybridation sp² dominante
- nano-cristallins, graphites très désordonnés

 \rightarrow validation des simulations à base de graphite

 les dépôts contiennent peu de deutérium (< qq %) (mesures IRTF, RMN)
 → ne sont pas du type soft ou hard layer

• en accord avec les conditions de formation

- températures élevées (aromatisation, désorption de D)
- fluence élevée (présence de défauts)

Etudes volumétriques : isothermes d'adsorption

aire spécifique : ~160 m² g⁻¹
 >> celle du CFC (× 100)
 hystéresis : indication d'un empilement graphitique (slit-shape holes)

dépôts : "surface" accessible très importante / microporosité (< 2nm)

Analyse "fractale"

dimension fractale ~ 3

↔ à très petite échelle : porosité en volume de toutes tailles

• à comparer à la mesure $d_f \sim 2.15 (0.1 - 100 \ \mu m)$

Analyse de l'allure de la marche I. Lien avec la fractalité

Analyse de l'allure de la marche : II. Distribution de pores

• Dubinin : $\theta = exp[-(RT ln(p_0/p)/E)^n]$ $E = \beta E_0 \qquad \beta = 0.3$ $L_D = 10.8 / (E_0 - 11.4) \qquad AC : 1.4 \text{ nm}$ ntr : 1.0 nm

• Stoeckli : $\theta = [a / (a + (-RT \ln(p_0/p) / EL_s)^3]^m$

AC : $L_{S} = 1.9 \text{ nm}$; $L_{PSD} = 2.0 \text{ nm}$ ntr : $L_{S} = 1.8 \text{ nm}$; $L_{PSD} = 1.8 \text{ nm}$

Analyse de la porosité • Aire spécifique mesurée avec CH₄ à 77 K $160 \text{ m}^2 \text{g}^{-1}$ - surface due à une microporosité - petits pores = volume $0.05 \text{ cm}^3 \text{ g}^{-1}$ - porosité en volume 4 % - en nombre : CH_4 / C 0.02 - en nombre, extrapolé à H_2 (D₂) 0.2 - à comparer à D / C (implantation) 0.4

 \rightarrow Conditions de fonctionnement des tokamaks ?

Objectifs

- Caractérisation complète de la structure (porosité à toute échelle)
- → Extrapolation à l'<u>hydrogène</u> dans les conditions de la machine
 - aspect statique (rétention)
 - aspect dynamique (diffusion)
 - micropores : piégeage transitoire macropores : diffusion rapide accès aux micropores lointains accès aux sites réactifs
- → Entrées pour des simulations de diffusion

Parmi les problèmes posés

- D⁺/D/D₂
- Réactivité, défauts, énergies

Participants

laboratoire PIIM, UMR 6633, université de Provence, Marseille

- Céline Martin, Pascale Roubin
- Marianne Richou, doctorante
- Christian Claudel, Maïssa Zammouri, Benoit Gilbert, stagiaires

Collaborations

 Ph Parent, C. Laffon (LURE - Orsay) 	XANES
 Ph Colomban, G. Sagon (LADIR - Thiais) 	Raman
• F. Ziarelli, S. Caldarelli (TRACES - Marseille)	RMN
• W. Saikaly, CP2M	MET
 service commun St Charles - Marseille 	MEB
 JP. Astier CRMCN - Marseille 	diff. X