Dynamique quantique des interactions hydrogène-surface : réactions Eley-Rideal entre atomes d'hydrogène et atomes adsorbés

Joseph G. Quattrucci,^a Xianwei Sha,^a Bret Jackson^a et Didier Lemoine^b

^b didier.lemoine@irsamc.ups-tlse.fr

^a University of Massachusetts, Amherst, USA

^b Laboratoire Collisions, Agrégats, Réactivité, Université Paul Sabatier, Toulouse

 Processus inverse de la dissociation
 ⇒ poster de Sven Nave sur la dissociation activée de H₂ et de D₂ sur Cu(111)

- Processus inverse de la dissociation ⇒ poster de Sven Nave sur la dissociation activée de H₂ et de D₂ sur Cu(111)
- Piégeage préalable et thermalisation des adsorbats
 ⇒ poster de Florian Wippel sur les états de chimisorption de H sur le graphite

Quelques exemples :

Catalyse – étapes limitantes sur les métaux

Quelques exemples :

- Catalyse étapes limitantes sur les métaux
- Semi-conducteurs reconstruction et passivation

Quelques exemples :

- Catalyse étapes limitantes sur les métaux
- Semi-conducteurs reconstruction et passivation
- Astrophysique formation de H₂ sur les grains
 - graphitiques
 - silicates amorphes and cristallins
 - glaces

Quelques exemples :

- Catalyse étapes limitantes sur les métaux
- Semi-conducteurs reconstruction et passivation
- Astrophysique formation de H₂ sur les grains
 - graphitiques
 - silicates amorphes and cristallins
 - glaces

Tokamaks – interactions plasma-parois

Quelques exemples :

- Catalyse étapes limitantes sur les métaux
- Semi-conducteurs reconstruction et passivation
- Astrophysique formation de H₂ sur les grains
 - graphitiques
 - silicates amorphes and cristallins
 - glaces
- Tokamaks interactions plasma-parois
- Stockage de l'hydrogène chimisorbé compétition

- Mécanismes réactionnels
- Méthodes quantiques

- Mécanismes réactionnels
- Méthodes quantiques
- Influence du substrat sur la réaction de H₂

- Mécanismes réactionnels
- Méthodes quantiques
- Influence du substrat sur la réaction de H₂
- Recombinaison de H₂, HD sur le graphite

- Mécanismes réactionnels
- Méthodes quantiques
- Influence du substrat sur la réaction de H₂
- Recombinaison de H₂, HD sur le graphite
- $\blacksquare H + Cl/Au(111)$

Système de coordonnées

Système de coordonnées

A adsorbat cible (target) et B atome incident + surface plate \Rightarrow symétrie cylindrique avec V(Z,z, ρ)

$$z = Z_B - Z_A = z_i - z_t = r \cos \theta$$

$$\rho = r \sin \theta$$

Paquet d'ondes initial

Distribution gaussienne pour la diffusion selon z_i localisée dans la zone asymptotique

$$G(z_i) = (2\pi\sigma^2)^{-1/4} e^{-(\frac{z_i - z_0}{2\sigma})^2} e^{ik_{z_0}z_i}$$

$$G(k_{z_i}) = \left(\frac{2\sigma^2}{\pi}\right)^{1/4} e^{-(k_{z_i}-k_{z_0})^2\sigma^2 + i(k_{z_i}-k_{z_0})(z_1-z_0)}$$

Paquet d'ondes initial

Distribution gaussienne pour la diffusion selon z_i localisée dans la zone asymptotique

$$G(z_i) = (2\pi\sigma^2)^{-1/4} e^{-(\frac{z_i - z_0}{2\sigma})^2} e^{ik_{z_0}z_i}$$

$$G(k_{z_i}) = \left(\frac{2\sigma^2}{\pi}\right)^{1/4} e^{-(k_{z_i}-k_{z_0})^2\sigma^2 + i(k_{z_i}-k_{z_0})(z_1-z_0)}$$

La fonction d'onde initiale est le produit de $G(k_{z_i})$ par une onde plane selon k_{\parallel} , soit une fonction de Bessel selon k_{ρ} , et par un état vibrationnel pour l'adsorbat

Paquet d'ondes initial

Distribution gaussienne pour la diffusion selon z_i localisée dans la zone asymptotique

$$G(z_i) = (2\pi\sigma^2)^{-1/4} e^{-(\frac{z_i - z_0}{2\sigma})^2} e^{ik_{z_0}z_i}$$

$$G(k_{z_i}) = \left(\frac{2\sigma^2}{\pi}\right)^{1/4} e^{-(k_{z_i}-k_{z_0})^2\sigma^2 + i(k_{z_i}-k_{z_0})(z_1-z_0)}$$

La fonction d'onde initiale est le produit de $G(k_{z_i})$ par une onde plane selon k_{\parallel} , soit une fonction de Bessel selon k_{ρ} , et par un état vibrationnel pour l'adsorbat À $G(k_{z_i})$ correspond une distribution G(E)*localisée* dans un domaine d'énergie Analyse du flux en résolution d'énergie et d'état final j

$$P_{j}(E) = \frac{\hbar}{\mu} \frac{1}{\left[G\left(E\right)\right]^{2}} Im \left[\psi_{j}^{\star}\left(Z_{f}, E\right) \left(\frac{d\psi_{j}\left(Z, E\right)}{dZ}\right)_{Z=Z_{f}}\right]$$

Analyse du flux en résolution d'énergie et d'état final j

$$P_{j}(E) = \frac{\hbar}{\mu} \frac{1}{\left[G\left(E\right)\right]^{2}} Im \left[\psi_{j}^{\star}\left(Z_{f}, E\right)\left(\frac{d\psi_{j}\left(Z, E\right)}{dZ}\right)_{Z=Z_{f}}\right]$$

obtenu après transformées de Fourier de la fonction d'onde et de sa dérivée au point d'analyse $Z_f (\leq Z_{\infty})$

$$\psi_j(Z_f, E) = \int_0^\infty \psi_j(Z_f, t) e^{i\frac{Et}{\hbar}} dt$$

$$\left(\frac{d\psi_j\left(Z,E\right)}{dZ}\right)_{Z=Z_f} = \int_0^\infty \left(\frac{d\psi_j\left(Z,t\right)}{dZ}\right)_{Z=Z_f} e^{i\frac{Et}{\hbar}}dt$$

Opérateur partitionné (split)

 $\mathbf{H}_0(\mathbf{k})$ opérateur d'énergie cinétique

V(q) opérateur d'énergie potentielle

$$i\hbar\frac{\partial\Psi(t)}{\partial t} = \mathbf{H}\Psi(t) = (\mathbf{H}_{\mathbf{0}} + \mathbf{V})\Psi(t) \Rightarrow \Psi(t) = e^{-i\frac{\mathbf{H}t}{\hbar}}\Psi(0)$$

Opérateur partitionné (split)

 $\mathbf{H}_0(\mathbf{k})$ opérateur d'énergie cinétique

V(q) opérateur d'énergie potentielle

$$i\hbar\frac{\partial\Psi(t)}{\partial t} = \mathbf{H}\Psi(t) = (\mathbf{H}_{\mathbf{0}} + \mathbf{V})\Psi(t) \Rightarrow \Psi(t) = e^{-i\frac{\mathbf{H}t}{\hbar}}\Psi(0)$$

Feit, Fleck, Steiger [J. Comp. Phys. 47 (1982) 412]

$$\mathbf{U}^{(2)}\left(\Delta t\right) = e^{-i\frac{\mathbf{H_0}\Delta t}{2\hbar}}e^{-i\frac{\mathbf{V}\Delta t}{\hbar}}e^{-i\frac{\mathbf{H_0}\Delta t}{2\hbar}}$$

Opérateur partitionné (split)

 $\mathbf{H}_0(\mathbf{k})$ opérateur d'énergie cinétique

 $\mathbf{V}(\mathbf{q})$ opérateur d'énergie potentielle

$$i\hbar\frac{\partial\Psi(t)}{\partial t} = \mathbf{H}\Psi(t) = (\mathbf{H}_{\mathbf{0}} + \mathbf{V})\Psi(t) \Rightarrow \Psi(t) = e^{-i\frac{\mathbf{H}t}{\hbar}}\Psi(0)$$

Feit, Fleck, Steiger [J. Comp. Phys. 47 (1982) 412]

$$\mathbf{U}^{(2)}\left(\Delta t\right) = e^{-i\frac{\mathbf{H_0}\Delta t}{2\hbar}}e^{-i\frac{\mathbf{V}\Delta t}{\hbar}}e^{-i\frac{\mathbf{H_0}\Delta t}{2\hbar}}$$

Absorption en bouts de grille après chaque $\Delta t : e^{-\frac{f_{abs}\Delta t}{\hbar}}\Psi$

$$f_{abs} \left(q > q_{abs} \right) = \varepsilon \left[\left(q - q_{abs} \right) / L_{abs} \right]^3$$

Représentation pseudo-spectrale

Choix d'une base de fonctions **orthogonales** $\{\phi_i\}_N$

$$\psi(q) = \sum_{i=0}^{N_{SR}-1} a_i \phi_i(q)$$

$$T_{i\alpha}^{\dagger} = \sqrt{\omega_{\alpha}}\phi_i(q_{\alpha})$$
 de sorte que $\mathbf{S} = \mathbf{T}^{\dagger}\mathbf{T} = \mathbf{1}$

$$V_{ij}^{PS} = \sum_{\alpha=1}^{N-1} \omega_{\alpha} \phi_i^{\star}(q_{\alpha}) V(q_{\alpha}) \phi_j(q_{\alpha}) = \left[T^{\dagger} V T\right]_{ij}$$

Représentation pseudo-spectrale

Choix d'une base de fonctions **orthogonales** $\{\phi_i\}_N$

$$\psi(q) = \sum_{i=0}^{N_{SR}-1} a_i \phi_i(q)$$

$$T_{i\alpha}^{\dagger} = \sqrt{\omega_{\alpha}} \phi_i(q_{\alpha})$$
 de sorte que $\mathbf{S} = \mathbf{T}^{\dagger} \mathbf{T} = \mathbf{1}$

$$V_{ij}^{PS} = \sum_{\alpha=1}^{N-1} \omega_{\alpha} \phi_i^{\star}(q_{\alpha}) V(q_{\alpha}) \phi_j(q_{\alpha}) = \left[T^{\dagger} V T\right]_{ij}$$

 \Rightarrow schéma gaussien d'ordre 2N - 1Bases d'ondes planes selon Z et z (FFTs), et de Bessel selon ρ (transformée de Bessel discrète)

Jackson, Lemoine [J. Chem. Phys. 114 (2001) 474] ⇒ étude systématique de la réactivité Eley-Rideal en fonction de l'énergie d'adsorption de H

Jackson, Lemoine [J. Chem. Phys. 114 (2001) 474] ⇒ étude systématique de la réactivité Eley-Rideal en fonction de l'énergie d'adsorption de H

H strongly chemisorbed on metals

Jackson, Lemoine [J. Chem. Phys. 114 (2001) 474] ⇒ étude systématique de la réactivité Eley-Rideal en fonction de l'énergie d'adsorption de H

H strongly chemisorbed on metals

H weakly adsorbed on carbonaceous surface

Jackson, Lemoine [J. Chem. Phys. 114 (2001) 474] ⇒ étude systématique de la réactivité Eley-Rideal en fonction de l'énergie d'adsorption de H

H strongly chemisorbed on metals

H weakly adsorbed on carbonaceous surface

réactions d'atomes chauds majoritaires sur les métaux

Jackson, Lemoine [J. Chem. Phys. 114 (2001) 474] ⇒ étude systématique de la réactivité Eley-Rideal en fonction de l'énergie d'adsorption de H

H strongly chemisorbed on metals

H weakly adsorbed on carbonaceous surface

réactions d'atomes chauds majoritaires sur les métaux
compétition Eley-Rideal—atomes chauds sinon
réactivité Eley-Rideal "énorme" en physisorption

Recombinaison de H₂ sur le graphite

Calculs de fonctionnelle de la densité^{*a*} : code VASP

Calculs de fonctionnelle de la densité^a : code VASP

- Dynamique de paquets d'ondes quantiques [2-4]
 adsorbat H isolé avec liaison H-C rigide
 - adsorbat H isolé avec liaison H-C relaxée
 - physisorbat H isolé

Calculs de fonctionnelle de la densité^a : code VASP

- Dynamique de paquets d'ondes quantiques [2-4]
 adsorbat H isolé avec liaison H-C rigide
 adsorbat H isolé avec liaison H-C relaxée
 physisorbat H isolé
- Cinétique de formation de HD à énergie thermique [5]
 [1] X. Sha, B. Jackson, Surf. Sci. 496, 38 (2002)
 - [2] D. Lemoine, B. Jackson, Comput. Phys. Comm. **137**, 415 (2001)
 - [3] B. Jackson, D. Lemoine, J. Chem. Phys. **114**, 474 (2001)
 - [4] X. Sha, B. Jackson, D. Lemoine, J. Chem. Phys. 116, 7158 (2002)
 - [5] T. Zecho, A. Güttler, X. Sha, D. Lemoine, B. Jackson, J. Küppers, Chem. Phys. Lett. **366**, 188 (2002)

- Réactivité "énorme" : $\sigma_{ER} = 8 12 \text{ Å}^2$
 - par rapport à H(gaz) + H/métal
 - "steering" de H incident vers H adsorbé

- Réactivité "énorme" : σ_{ER} = 8–12 Å²
 par rapport à H(gaz) + H/métal
 "steering" de H incident vers H adsorbé
- H(gaz) + H(physisorbat) \rightarrow 2H(gaz) possible pour E_i > 36 meV $\Rightarrow \sigma_{ER}$ chute brutalement

- Réactivité "énorme" : σ_{ER} = 8–12 Å²
 par rapport à H(gaz) + H/métal
 "steering" de H incident vers H adsorbé
- H(gaz) + H(physisorbat) \rightarrow 2H(gaz) possible pour E_i > 36 meV $\Rightarrow \sigma_{ER}$ chute brutalement
- Cinétique de formation de HD à énergie thermique suggère $\sigma_{ER} > 7 \text{ Å}^2$ pour $\Theta < 0.1 \text{ ML}$, en bon accord avec le modèle quantique

- Réactivité "énorme" : σ_{ER} = 8–12 Å²
 par rapport à H(gaz) + H/métal
 "steering" de H incident vers H adsorbé
- H(gaz) + H(physisorbat) \rightarrow 2H(gaz) possible pour E_i > 36 meV $\Rightarrow \sigma_{ER}$ chute brutalement
- Cinétique de formation de HD à énergie thermique suggère $\sigma_{ER} > 7 \text{ Å}^2$ pour $\Theta < 0.1 \text{ ML}$, en bon accord avec le modèle quantique
- Perspectives :
 - ajouter la vibration H-C
 - étudier la dynamique de Langmuir-Hinshelwood

Expériences

Calculs de fonctionnelle de la densité^a code VASP

- Calculs de fonctionnelle de la densité^a
 code VASP
- Dynamique de paquets d'ondes quantiques^b
 adsorbat Cl isolé sur une surface plate

- Calculs de fonctionnelle de la densité^a
 code VASP
- Dynamique de paquets d'ondes quantiques^b
 adsorbat Cl isolé sur une surface plate
- Trajectoires quasi-classiques^a
 adsorbat Cl isolé sur une surface plate
 adsorbat Cl isolé sur une surface ondulée
 approche multi-adsorbats avec Θ_{Cl} = 1/4 ML

- Calculs de fonctionnelle de la densité^a
 code VASP
- Dynamique de paquets d'ondes quantiques^b
 adsorbat Cl isolé sur une surface plate
- Trajectoires quasi-classiques^a
 adsorbat Cl isolé sur une surface plate
 adsorbat Cl isolé sur une surface ondulée
 approche multi-adsorbats avec Θ_{Cl} = 1/4 ML
- Comparaison avec les expériences

Conclusions H + Cl/Au(111)

- Réactivité substantielle : $\sigma_{QC} \approx \sigma_{QM} \approx 2-3 \text{ Å}^2$
 - bon accord avec les expériences
 - σ_{ER} bien plus important que pour H(gaz) + D/métal
 - "steering" de H vers Cl vs attraction H-Au
 - rôle mineur de l'ondulation de surface
 - $\sigma \nearrow$ avec T_S mais trop faiblement *vs* expériences

Conclusions H + Cl/Au(111)

- Réactivité substantielle : $\sigma_{QC} \approx \sigma_{QM} \approx 2-3 \text{ Å}^2$
 - bon accord avec les expériences
 - σ_{ER} bien plus important que pour H(gaz) + D/métal
 - "steering" de H vers Cl vs attraction H-Au
 - rôle mineur de l'ondulation de surface
 - $\sigma \nearrow$ avec T_S mais trop faiblement *vs* expériences
- Distribution TOF composite et bimodale ER-HA

Conclusions H + Cl/Au(111)

- Réactivité substantielle : $\sigma_{QC} \approx \sigma_{QM} \approx 2-3 \text{ Å}^2$
 - bon accord avec les expériences
 - σ_{ER} bien plus important que pour H(gaz) + D/métal
 - "steering" de H vers Cl vs attraction H-Au
 - rôle mineur de l'ondulation de surface
 - $\sigma \nearrow$ avec T_S mais trop faiblement *vs* expériences
- Distribution TOF composite et bimodale ER-HA
- Échange possible : désorption de Cl et piégeage de H
 signaux de transition REMPI en provenance de Cl atomique
 non observé pour H(gaz) + H/métal
 - écrantage de l'interaction Cl-Au par H